
Finite State Machines
CS 64: Computer Organization and Design Logic

Lecture #16
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

• Lab 8 due tomorrow

•Final Exam Announcements
•Will be 2 hours long – not 3 hours
• From 7:30 PM – 9:30 PM

• Practice Exam is on our website

• I will have office hours on Friday from 1 – 2 pm

3/9/20 Matni, CS64, Wi20 2

What’s on the Final Exam?

What’s on It?
• Everything we’ve done this quarter, incl. this week’s lectures

What Should I Bring?
• Your pencil(s), eraser, MIPS Reference Card (printed on 1 page)
• THAT’S ALL!

What Else Should I Know/Do?
• The exam is 2 hours long! (DSP time will match accordingly)

• IMPORTANT: Come to the classroom 5-10 minutes EARLY
• If you are late, I may not let you take the exam
• IMPORTANT: Use the bathroom before the exam – once inside, you cannot leave
• I will have some of you re-seated
• Bring your UCSB ID

3/9/20 Matni, CS64, Wi20 3

Lecture Outline

•Finite State Machines

•Moore vs. Mealy types

• State Diagrams

• Figuring out a circuit for a FSM

3/9/20 Matni, CS64, Wi20 4

3/9/20 Matni, CS64, Wi20 5

If a combinational logic circuit is an
implementation of a Boolean function,

then a sequential logic circuit can be
considered an implementation of

a finite state machine.

Finite State Machines (FSM)

• A State = An output or collection of outputs of a digital
“machine”

• A Machine = A computational entity that predictably works
based on one or more input conditions and yields a logical
output

• A Finite State Machine: An abstract machine that can be in
exactly one of a finite number of states at any given time

3/9/20 Matni, CS64, Wi20 6

Finite State Machines (FSM)

• The FSM can change from one state to another in response to some
external inputs

• The change from one state to another is called a transition.

• An FSM is defined by a list of its states, its initial state,
and the conditions for each

transition.

3/9/20 Matni, CS64, Wi20 7

STATE
“A”

Starting point
STATE

“B”

Transition A->B

Transition B->A

Example of a Simple FSM:
The Turnstile

initial state
State Transition Table

3/9/20 Matni, CS64, Wi20 8Source: Wikipedia

Current
State

Input Next
State

Output

Locked Coin Unlocked Unlocks the turnstile so that the customer can push through.

Locked Push Locked Nothing – you’re locked! J

Unlocked Coin Unlocked Nothing – you just wasted a coin! J

Unlocked Push Locked When the customer has pushed through, locks the turnstile.

Example of a Simple FSM:
The Turnstile

initial state
State Transition Table

3/9/20 Matni, CS64, Wi20 9Source: Wikipedia

Current
State

Input Next
State

Output

Locked Coin Unlocked Unlocks the turnstile so that the customer can push through.

Locked Push Locked Nothing – you’re locked! J

Unlocked Coin Unlocked Nothing – you just wasted a coin! J

Unlocked Push Locked When the customer has pushed through, locks the turnstile.

This is called a
state diagram

à

General Form of FSMs

3/9/20 Matni, CS64, Wi20 10

FSM Types

There are 2 types/models of FSMs:
•Moore machine
• Output is function of present state only

•Mealy machine
• Output is function of present state and present input

3/9/20 Matni, CS64, Wi20 11

Moore Machine

3/9/20 Matni, CS64, Wi20 12

Output is function of present state only

Example of a Moore Machine (with 1 state)

3/9/20 Matni, CS64, Wi20 13

A

CLK

Q*

Q* = QO.A
(read as: the next-state of Q will be QO.A)

i.e. On the next rising edge of the clock, the output
state – aka the output of D-FF (Q*) – will become

the previous value of Q (QO) AND the value of input A

QoCombinatorial logic

State registerClock signal

Output-to-input feedback

Represented
by Q

Example of a Moore Machine
(with 2 states + 1 output)

3/9/20 Matni, CS64, Wi20 14

A

CLK

Z

Z = Q0 + Q1

On the next rising edge of the clock, the output state Q0 will be Q0.A
and the output state Q1 will be … (not shown here, but you get the idea)

Also, the circuit output Z will become Q0 + Q1

NOTE: CLK is NOWHERE IN THE EQUATION!!!

Q1

Q0

Output is function of present state only

Represented by
Q0 and Q1 (states)

and Z (output)

.

.

.

Mealy Machine

3/9/20 Matni, CS64, Wi20 15

Output is function of present state and present input

Makes the difference w/ Moore Machines

Example of a Mealy Machine

3/9/20 Matni, CS64, Wi20 16

A

CLK

B

Z

Z = (Q* + A + B) = (QO XOR A) + (A + B)

On the next rising edge of the clock, the output of the entire
circuit (Z) will become …etc…

Q

Output is function of present state and present input

Example of a Moore FSM

WASHER_DRYER

• Let’s “build” a sequential logic FSM that acts as a controller to
a simplistic washer/dryer machine

• This machine takes in various inputs in its operation (we’ll only
focus on the following sensor-based ones):

• This machine also issues 1 output while running:

3/9/20 Matni, CS64, Wi20 17

Coin is in (vs it isn’t in)
Soap is present (vs it’s used up)
Clothes are still wet (vs clothes are dry)

“Done” indicator

Machine Design

•We want this machine to have 4 distinct states that
we go from one to the next in this sequence:

1. Initial State
• Where we are when we are waiting to start the wash

2. Wash
• Where we wash with soap and water

3. Dry
• Where we dry the clothes

4. Done

3/9/20 Matni, CS64, Wi20 18

3/9/20 Matni, CS64, Wi20 19

State Diagram for
Washer-Dryer Machine

Wash

Done

Initial
State

GTNS

DONE = 1

DONE = 0

inputs

outputs
state

transition

GTNS

GTNS

GTNS

1

Dry

GTNS

GTNS

GTNS = COIN_IN + NO_SOAP + CLTHS_DRY

How do we get to this??

Combining the Inputs

• Let’s create a variable called GTNS (i.e. Go To Next State)

• GTNS is 1 if any of the following is true:
• Coin is in
• Soap is no longer detected
• Clothes are now dry
• I assume that these 3 inputs to be mutually exclusive

3/9/20 Matni, CS64, Wi20 20

Coin is in (vs it isn’t in)
Soap is no longer detected (vs it’s still there)
Clothes are now dry (vs clothes are still wet)

What’s Going to Happen?
1/2

•We start at an “Initial” state whenever we start up the machine
• Let’s assume this stage is when you’d put in the soap and clothes
• Once input “Coin is in” is 1, GTNS is now 1
• This event triggers leaving the current state to go to the next state

• This is followed by the next state, “Wash”
• “Coin inserted” is now 0 at this point (so GTNS goes back to 0)
• While soap is still present, GTNS goes back to 0
• When the input “Soap is no longer present” goes to 1, GTNS goes to 1
• This event triggers leaving the current state to go to the next state

3/9/20 Matni, CS64, Wi20 21

Coin is in (vs it isn’t in)
Soap is no longer detected (vs it’s still there)
Clothes are now dry (vs clothes are still wet)

• This is followed by the next state, “Dry”
• This new state sets an output that triggers a timer
• The input “Soap is no longer present” goes to 0, so GTNS is 0 also
• While the input “Clothes are now dry” is 0 , GTNS remains at 0 too
• When the input “Clothes are now dry” is 1, GTNS changes to 1
• This event triggers leaving the current state to go to the next state

• This is followed by the next and last state, “Done”
• When you’re here, you go back to the “initial” state
• No inputs to consider: you do move this regardless

3/9/20 Matni, CS64, Wi20 22

What’s Going to Happen?
2/2

Coin is in (vs it isn’t in)
Soap is no longer detected (vs it’s still there)
Clothes are now dry (vs clothes are still wet)

3/9/20 Matni, CS64, Wi20 23

State Diagram for
Washer-Dryer Machine

Wash

Done

Initial
State

GTNS

DONE = 1

DONE = 0

inputs

outputs
state

transition

GTNS

GTNS

GTNS

1

Dry

GTNS

GTNS

GTNS = COIN_IN + NO_SOAP + CLTHS_DRY

Unconditional Transitions

•Sometimes the transition is unconditional
• Does not depend on any input –

you go from State X to State Y regardless…

•We then diagram this as a “1” (for “always does this”)

3/9/20 24

State 2State 0
K = 1

State 1

K = 0
1

K = 0K = 1

Representing The States

• How many bits do I need to represent all the states in this
Washer-Dryer Machine?

• There are 4 unique states (including “init”)
• So, 2 bits

• If my state machine will be built using a memory
circuit (most likely, a D-FF), how many of these
should I have?
• 2 bits = 2 D-FFs

• There is another scheme to do this called “One Hot Method”
• Will be explained later…

3/9/20 Matni, CS64, Wi20 25

State S1 S0
Initial 0 0
Wash 0 1
Rinse 1 0
Dry 1 1

Example of a Moore FSM 2

DETECT_1101
• Let’s build a sequential logic FSM that always detects a specific

serial sequence of bits: 1101

•We’ll start at an “Initial” state (S0)
•We’ll first look for a 1. We’ll call that “State 1” (S1)

• Don’t go to S1 if all we find is a 0!

•We’ll then keep looking for another 1. We’ll call that
“State 11” (S2)

3/9/20 Matni, CS64, Wi20 26

Example of a Moore Machine 2

DETECT_1101
• Then… a 0. We’ll call that “State 110” (S3)

• Then another 1.
We’ll call that “State 1101”(S4) – this will also output a FOUND signal

• We will always be detecting “1101” (it doesn’t end)
So, as SOON as S4 is done, we keep looking for 1s or 0s

• Example: if the input stream is 111101110101101000011111011011
we detect “1101” at ñ ñ ñ ñ ñ

3/9/20 Matni, CS64, Wi20 27

111101110101101000011111011011

State Diagram 2

3/9/20 Matni, CS64, Wi20 28

“1” “11”

“110”“1101”

Initial
State

Input = 1
Input = 0 Input = 1

Input = 1

Input = 0

Input = 0

Input = 0

FOUND = 1

Input = 1

Input = 1

Input = 0

S0

S4 S3

S2S1

Representing The States

• How many bits do I need to represent all the states in this
“Detect 1101” Machine?

• There are 5 unique states
(including “init”)
• So, 3 bits

• How many D-FFs should I have
to build this machine?
• 3 bits = 3 D-FFs

3/9/20 Matni, CS64, Wi20 29

State B2 B1 B0

Initial 0 0 0
Found “1” 0 0 1
Found “11” 0 1 0
Found “110” 0 1 1
Found “1101” 1 0 0
N/A 1 0 1

1 1 X

Designing the Circuit for the FSM

1. We start with a T.T

• Also called a “State Transition Table”

2. Make K-Maps and simplify

• Usually give your answer as a “sum-of-products” form

3. Design the circuit

• Have to use D-FFs to represent the state bits

3/9/20 Matni, CS64, Wi20 30

1. The Truth Table
(The State Transition Table)

3/9/20 Matni, CS64, Wi20 31

State B2 B1 B0 I B2* B1* B0* FOUND

Initial 0 0 0 0 0 0 0 0

1 0 0 1 0

Found “1” 0 0 1 0 0 0 0 0

1 0 1 0 0

Found “11” 0 1 0 0 0 1 1 0

1 0 1 0 0

Found “110” 0 1 1 0 0 0 0 0

1 1 0 0 0

Found “1101” 1 0 0 0 0 0 0 1

1 0 1 0 1

CURRENT STATE NEXT STATEINPUT(S) OUTPUT(S)

Note: We are
ignoring the N/A states

2. K-Maps for B2* and B1*

•B2* = !B2.B1.B0.I
• No further simplification

•B1* = !B2.!B1.B0.I
+ B2.!B1.!B0.I
+ !B2.B1.!B0

3/9/20 Matni, CS64, Wi20 32

B2.B1
B0.I

00 01 11 10

00

01

11 1

10

B2.B1
B0.I

00 01 11 10

00 1

01 1 1

11 1

10

B2*

B1*

You need to
do this for all
state outputs

2. K-Map for B0*
Output FOUND

•B0* = !B2.!B1.!B0.I
+ !B2.B1.!B0.!I

•FOUND = B2.!B1.!B0
• Note that FOUND does not need

a K-Map. It is always “1” (i.e. True) when we are in state S4
(i.e. when B2=1, B1=0, B0=0)

3/9/20 Matni, CS64, Wi20 33

B2.B1
B0.I

00 01 11 10

00 1

01 1

11

10

B0*

3/9/20 Matni, CS64, Wi20 34

3. Design the Circuit

Note that CLK is the input to ALL
the D-FFs’ clock inputs. This is a
synchronous machine.

Note the use of labels (example: B2
or B0-bar) instead of routing wires
all over the place!

Note that I issued both Bn and Bn-
bar from all the D-FFs – it makes it
easier with the labeling and you
won’t have to use NOT gates!

Note that the sole output (FOUND)
does not need a D-FF because it is
NOT A STATE BIT!

YOUR TO-DOs

• Review this FSM stuff!

• Finish Lab #8!

3/9/20 Matni, CS64, Wi20 35

3/9/20 Matni, CS64, Wi20 36

