Exercises with Sequential Logic

CS 64: Computer Organization and Design Logic
Lecture \#15
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

THIS IS WHAT LEARNING LOGIC GATES FEELS LIKE
SEE, YOU JUST CONNECT THIS 12 INPUT REVERSE FLIP-FLOP TO THE CONTROLLED TWO-THIRDS ADDER, WHICH RESETS THE LATCHES IN THE NOT-NAND RELAY ARRAY, THEN LOOP BACK TO ODD-NUMBER INPUTS AND REVERSE ALL YOUR SWITCHES!

Administrative

- Lab 8 will be posted today
- Final Exam Info:
- Tuesday, March 17 ${ }^{\text {th }}$ at 7:30 PM in this classroom
- Arrive 10 mins early - randomized seating...
- Cumulative Exam
- Study guide/example Qs will be issued by this weekend
- More details to follow

Lecture Outline

- Exercises with Sequential Logic

Latches vs. FFs

- Latches capture data on an entire 1 or 0 of the clock
- FFs capture data on the edge of the clock
- This example shows the positive $(0 \rightarrow 1)$ edge used

Simplified CPU Block Diagram

Class Exercise 1

The figure below shows an RS latch made out of NAND gates (rather than NOR gates). How do Q and \bar{Q} depend on the RS inputs? i.e. verify that the circuit can indeed be used as a RS latch.

Exercise 2

Given waveforms for A, B, C, and Clk (see blackboard), determine the output waveform for F

Exercise 3

- Let's design a 3-bit counter using D-FFs and logic gates.
- What's needed:
- This counts $000 \rightarrow 001 \rightarrow 010 \rightarrow \ldots \rightarrow 111 \rightarrow 000$
- i.e. from 0 to 7 and then loops again to 0 , etc...
- Draw the T.T. based on this description
- How many inputs? How many outputs?
- Figure out what the "next states" look like based on "current states"
- Draw K-Maps and find optimal output functions

Exercise 4

- Draw the waveforms B and C for this digital circuit, given CLKA is a regular clock input.
- Assume all inputs to the D-FFs are initially at 0.
-What do you conclude about what this does?

$$
1
$$

Solutions to Class Exercises 2 and 3 From Lecture 15

(c) Ziad Mani, 2018

$K-\operatorname{map}$ for $Q_{2}{ }^{*}$

$Q_{2}^{*}=Q_{2} \cdot \overline{Q_{0}}+Q_{2} \cdot \overline{Q_{1}}+\bar{Q}_{2} \cdot Q_{1} \cdot Q_{0}$
for Q_{1}^{*}

$Q_{1}^{*}=Q_{1} \cdot \bar{Q}_{0}+\overline{Q_{1}} \cdot Q_{0}=Q_{1} \oplus Q_{0}$

$$
Q_{0}^{*}=\overline{Q_{0}}
$$

YOUR TO-DOs

- Lab 8

