Multiplexers, ALU Design

CS 64: Computer Organization and Design Logic

Lecture #13 Winter 2020

Ziad Matni, Ph.D. Dept. of Computer Science, UCSB

Administrative

- Lab 6 due Thursday!
- Lab 7 will be posted today

- This Friday, the TAs will be in the lab
 - Attendance **is not mandatory**, but likely <u>very useful</u> for you to be there
 - Work on your Lab 7 b/c it's due next Tuesday

Lecture Outline

- More on Logic Simplification using Kmaps
- Multiplexers
- ALUs

Any Questions From Last Lecture?

Any Questions About the Lab?

5 Minute Pop Quiz!

• Given the following K-Map for binary function **F**:

BAC	00	01	11	10
0	1	1		1
1	1			1

- a) Group properly and write the optimized function **F**
- b) Draw the circuit

5 Minute Pop Quiz! (Solution)

• Given the following K-Map for binary function **F**:

- a) Group properly and write the optimized function **F** = **!A!B** + **!C**
- b) Draw the circuit

See black board

- Given the following truth table, draw the resulting logic circuit
 - **STEP 1**: Draw the K-Map and simplify the function
 - **STEP 2**: Construct the circuit from the now simplified function

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	1

					-						
Α	В	С	D	F							
0	0	0	0	0	Fyerc	ise	1 _	Ste	n 1		
0	0	0	1	0	Gotth		т imn	Jific	- P d fi	inct	ion
0	0	1	0	0	<u>Uet ti</u>	IE S	ΠIΡ	iijie	uju	πτε	ΙΟΠ
0	0	1	1	0				D -	A	= 1	
0	1	0	0	1		В		– م لــــــــــــــــــــــــــــــــــــ	· <u> </u>	ل	
0	1	0	1	0			00	01	11	10	
0	1	1	0	0							
0	1	1	1	0		00		1	1		
1	0	0	0	0		01					
1	0	0	1	0		01					Г(А,
1	0	1	0	1	D = 1 -	11					
1	0	1	1	1					1	1	
1	1	0	0	1		10			1	1	
1	1	0	1	0							
1	1	1	0	1							
1	1	1	1	1				Matni,	CS64, Wi20		

F(A,B,C) = B.!C.!D + A.C

Exercise 1 – Step 2 Draw the logic circuit diagram

F(A,B,C) = B.!C.!D + A.C

• Given the following truth table, draw the resulting logic circuit

• Given the following schematic of a circuit, (a) write the function and (b) fill out the truth table:

$$X = A.B + !(A.C)$$

(note that also means: **X** = **A**.**B** + **!A** + **!C**)

Α	В	С	X
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

• Given the following schematic of a circuit, (a) write the function and (b) fill out the truth table:

(note that also means: **X** = **A**.**B** + **!A** + **!C**)

Α	В	С	X
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Multiplexer

- A logical selector:
 - Select either input A or input B to be the output

```
// if s = 0, output is a
// if s = 1, output is b
int mux(int a, int b, int s)
{
    if (!s) return a;
    else return b;
}
```

Multiplexer (*Mux* for short)

- Combinatorial circuits who function as a "chooser" between multiple inputs to be "driven to" the output
- Always multiple inputs (N), always ONE output (N-to-1 mux)
 - Can be drawn symbolically in 2 ways (trapezoid vs oval) --- there's NO difference, just a preference in drawing
- 1 of the input data lines gets selected to become the output, based on a 3rd "select" (sel) input
 - If **sel** = 0, then I_0 gets to be the output
 - If **sel** = 1, then I_1 gets to be the output
 - So: OUTPUT = I₁.sel + I₀.sel

• The opposite of a Mux is called a **Demulitplexer** (or **Demux**)

Mux Configurations

Or they can have more than two data inputs

The Use of Multiplexers

- Makes it possible for several signals (variables) to share one resource
 - Very commonly used in data communication lines

- General mux description: N-bit, M-to-1
- Where: N = how "wide" the input is (# of input bits, min. 1) M = how many inputs to the mux (min. 2)
- The "select" input (S) has to be able to select 1 out of M inputs
 - So, if M = 2, S should be at least 1 bit (S = 0 for one line, S = 1 for the other)
 - But if M = 3, S should be at least 2 bits (why?)
 - If M = 4, S should be ??? (ANS: at least 2 bits)
 - If M = 5, S should be ??? (ANS: at least 3 bits)

Combining Muxes Together

Can I do a **4:1** mux from 2:1 muxes?

Generally, you can do **2ⁿ:1** muxes from 2:1 muxes.

What Does This Circuit Do?

What Does This Circuit Do?

Arithmetic-Logic Unit (ALU)

- Recall: the ALU does all the computations necessary in a CPU
- The previous circuit was a simplified ALU:
 - When S = 00, R = A + B
 - When S = 01, R = A B
 - When S = 10, R = A AND B
 - When S = 11, R = A OR B

Abstract Schematic of the MIPS CPU *Relevant to a future lab...*

YOUR TO-DOs

• Go to Thursdsay lab

(we won't take attendance)

• Work on Lab 7, which is due **next Tuesday**

