

Administrative

- Lab 6 out today
- Due by next week **Thursday**
- Extra time to finish it (it's challenging)
- Midterm Exam grades will be posted by the weekend

Lecture Outline

- Intro to Binary (Digital) Logic Gates
- Truth Table Construction
- Logic Functions and their Simplifications
- The Laws of Binary Logic

Digital i.e. Binary Logic

- Electronic circuits when used in computers are a series of switches
- 2 possible states: either ON (1) and OFF (0)

- Perfect for binary logic representation!

Basic Building Blocks of Digital Logic

- Same as the bitwise operators:

NOT
AND
OR
XOR
etc...

- We often refer to these as "logic gates" in digital design

Electronic Circuit Logic Equivalents

Switch A-Open $={ }^{\circ} 0$ ". Closed $={ }^{\prime \prime} 1^{-}$ Switch B-Open $={ }^{\prime \prime} 0$. Closed $={ }^{\prime \prime}{ }^{-1}$

Switch $A-$ Open $={ }^{\prime \prime} 0 "$. Closed $=" 1 "$
Switch $B-$ Open $={ }^{*} 0 "$. Closed $=" 1 "$

Graphical Symbols and Truth Tables NOT

Graphical Symbols and Truth Tables AND and NAND

Practice Drawing
the Symbo!!

\mathbf{A}	\mathbf{B}	$\mathbf{A} \cdot \mathbf{B}$
0	0	0
0	1	0
1	0	0
1	1	1

A	\mathbf{B}	$\overline{A \cdot B}$ or $!(A \cdot B)$
0	0	1
0	1	1
1	0	1
1	1	0

Graphical Symbols and Truth Tables OR and NOR

Practice Drawing
the Symbol!

\mathbf{A}	\mathbf{B}	$\mathbf{A}+\mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{A}	\mathbf{B}	$\mathbf{A + B}$ or $!(\mathbf{A}+\mathbf{B})$
0	0	1
0	1	0
1	0	0
1	1	0

Graphical Symbols and Truth Tables XOR and XNOR

\mathbf{A}	\mathbf{B}	$\mathbf{A} \oplus \mathbf{B}$	$\overline{\mathbf{A} \oplus \mathbf{B}}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Constructing Truth Tables

- T.Ts can be applied to ANY digital circuit
- They show ALL possible inputs with ALL possible outputs
- Number of entries in the T.T.
$=\mathbf{2}^{\mathbf{N}}$, where N is the number of inputs

Example: Constructing the T.T of a 1-bit Adder

- Recall the 1-bit adder:
- 3 inputs: I_{1} and I_{2} and C_{1} EXAMPLE:
- Input1, Input2, and Carry-In
- How many entries in the T.T. is that?
- 2 outputs: R and C_{o}
- Result, and Carry-Out
- You can have multiple outputs: each will still depend on some combination of the inputs

0

Example: Constructing the T.T of a 1-bit Adder

T.T Construction Time!

Example: Constructing the T.T of a 1-bit Adder

		INPUTS				
	$\#$	$\mid 1$	12	Cl	CO	\mathbf{R}
	0	0	0	0	0	0
Note the order of the inputs!!!	1	0	0	1	0	1
	2	0	1	0	0	1
	3	0	1	1	1	0
	4	1	0	0	0	1
	5	1	0	1	1	0
	6	1	1	0	1	0
	7	1	1	1	1	1

Logic Functions

- An output function F can be seen as a combination of 1 or more inputs
- Example: $F=A . B+C$
(all single bits)
- This is called combinatorial logic

Equivalent in C/C++:

```
boolean f (boolean a, boolean b, boolean c)
{
    return ( (a & b) | c );
}
```


OR and AND as Sum and Product

- Logic functions are often expressed with basic logic building blocks, like ORs and ANDs and NOTs, etc...
- OR is sometimes referred to as "logical sum" or "logical union"
- Partly why it's symbolized as " + "
- BUT IT'S NOT THE SAME AS NUMERICAL ADDITION!!!!!!!
- AND as "logical product" or "logical disjunction"
- Partly why it's symbolized as "."
- BUT IT'S NOT THE SAME AS NUMERICAL MULTIPLICATION!!!!!!

Example

<div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left: none !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">\mathbf{A}</td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">\mathbf{B}</td>
<td style="text-align: left; border-bottom: none !important; border-top: none !important; width: auto; vertical-align: middle; ">$\mathbf{A} \oplus \mathbf{B}$</td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| \mathbf{A} | \mathbf{B} | $\mathbf{A} \oplus \mathbf{B}$ |
| :--- | :--- | :--- |</table-markdown></div>
 000
 011
 101
 110

- A XOR B takes the value " 1 " (i.e. is TRUE) if and only if
- $A=0, B=1$ i.e. ! $A \cdot B$ is TRUE, or
- $A=1, B=0$ i.e. $A .!B$ is TRUE
- In other words, A XOR B is TRUE iff (if and only if) $A!B+!A B$ is TRUE

$$
A \oplus B=!A \cdot B+A .!B
$$

Which can also be written as:
$\bar{A} \cdot B+A \cdot \bar{B}$

Representing the Circuit Graphically

\mathbf{A}	\mathbf{B}	$\mathbf{A} \oplus \mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	0

$A \oplus B=!A \cdot B+A \cdot!B$

Q: Does it take any time for a electronic signal to go thru 3 "layers" of logic gates?

A: Ideally, NO, it all happens simultaneously.
In reality, OF COURSE it takes time (it's called latency)

What is The Logical Function for The Half Adder?

	INPUTS		OUTPUTS	
$\#$	11	12	CO	R
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	0

Half Adder

1-bit adder that does not have a Carry-In (Ci) bit.

This logic block has only 2 1-bit inputs and 2 1-bit outputs

Our attempt to describe the outputs as functions of the inputs:

$$
\begin{aligned}
& C O=I_{1} \cdot I_{2} \\
& R=I_{1}+I_{2}
\end{aligned}
$$

What is The Logical Function for A Full 1-bit adder?

Ans.:

$$
\begin{aligned}
\mathrm{CO} & =!|1 .|2 . \mathrm{Cl}+\mathrm{I} 1 .!| 2 . \mathrm{Cl}+\mathrm{I} 1 .|2 .!\mathrm{Cl}+\mathrm{I} 1 .| 2 . \mathrm{Cl} \\
\mathrm{R} & =!11 .!|2 . \mathrm{Cl}+!11 .|2 .!\mathrm{CI}+|1 .!| 2 .!\mathrm{Cl}+11 .| 2 . \mathrm{Cl}
\end{aligned}
$$

Minimization of Binary Logic

-Why?

- It's MUCH easier to read and understand...
- Saves memory (software) and/or physical space (hardware)
- Runs faster / performs better
- Why?... remember latency?
- For example, when we do the T.T. for (see demo on board):
$\mathbf{X}=\mathbf{A} . \mathbf{B}+\mathbf{A} .!\mathbf{B}+\mathbf{B} .!\mathbf{A}$, we find that it is the same as

$$
A+B
$$

(saved ourselves a bunch of logic gates!)

Using T.Ts vs. Using Logic Rules

- In an effort to simplify a logic function, we don't always have to use T.Ts - we can use logic rules instead

Example: What are the following logic outcomes?

$$
\begin{array}{cc}
A . A & \text { A } \\
\text { A }+ \text { A } & \text { A } \\
& \\
A .1 & \text { A } \\
\text { A +1 } & 1 \\
\text { A. } 0 & 0 \\
A+0 & \text { A }
\end{array}
$$

Using T.Ts vs. Using Logic Rules

- Binary Logic works in Associative ways
- (A.B).C is the same as A.(B.C)
- $(\mathrm{A}+\mathrm{B})+\mathrm{C} \quad$ is the same as $\mathrm{A}+(\mathrm{B}+\mathrm{C})$
- It also works in Distributive ways
$\cdot(\mathrm{A}+\mathrm{B}) \cdot \mathrm{C} \quad$ is the same as: $\quad \mathrm{A} . \mathrm{C}+\mathrm{B} . \mathrm{C}$
$\cdot(\mathrm{A}+\mathrm{B}) .(\mathrm{A}+\mathrm{C})$ is the same as:

$$
\begin{aligned}
& \mathbf{A} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{C}+\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{C} \\
= & A+A \cdot C+A \cdot B+B \cdot C \\
= & A+B \cdot C
\end{aligned}
$$

More Examples of Minimization a.k.a Simplification

- Simplify: \quad R $=A . B+!A . B$

Let's verify it with a truth-table

$$
\begin{aligned}
& =(A+!A) \cdot B \\
& =B
\end{aligned}
$$

Note: often, the AND dot symbol (.) is omitted, but understood to be there (like with multiplication dot symbol)

- Simplify: $\quad R=!A B C D+A B C D+!A B!C D+A B!C D$

$$
=B C D(A+!A)+!A B!C D+
$$

$A B!C D$

$$
\begin{aligned}
& =B C D+B!C D(!A+A) \\
& =B C D+B!C D \\
& =B D(C+!C) \\
& =B D
\end{aligned}
$$

More Simplification Exercises

- Simplify: $R=!A!B C+!A!B!C+!A B C+!A B!C+A!B C$

$$
\begin{array}{ll}
=!A!B(C+!C)+!A B(C+!C)+A!B C \\
=!A!B & +!A B \\
=!A(!B+B) & +A!B C \\
=!A+A!B C &
\end{array}
$$

You can verify it with a truth-table

- Reformulate using only AND and NOT logic:

$$
\begin{aligned}
R \quad & =!A C+!B C \\
& =C(!A+!B) \quad \\
& =C .!(A . B) \quad \leftarrow \text { De Morgan's }
\end{aligned}
$$

Law

Important: Laws of Binary Logic

Circuit Equivalence - each law has 2 forms that are duals of each other.

Name	$A N D$ form	OR form
Identity law	$1 A=A$	$0+A=A$
Null law	$O A=0$	$1+A=1$
Idempotent law	$A A=A$	$A+A=A$
Inverse law	$A \bar{A}=0$	$A+B=B+A$
Commutative law	$A B=B A$	$(A+B)+C=A+(B+C)$
Associative law	$(A B) C=A(B C)$	$A(B+C)=A B+A C$
Distributive law	$A+B C=(A+B)(A+C)$	$A+A B=A$
Absorption law	$A(A+B)=A$	$\overline{A+B}=\bar{A} \bar{B}$
De Morgan's law	$\overline{A B}=\bar{A}+\bar{B}$	A

More Simplification Examples

Simplify the Boolean expression:

- ($A+B+C$). ($D+E)^{\prime}+(A+B+C) .(D+E)$

Simplify the Boolean expression and write it out on a truth table as proof

- X.Z + Z.(X'+ X.Y)

Use DeMorgan's Theorm to re-write the expression below using at least one OR operation

- NOT(X + Y.Z)

Scaling Up Simplification

- When we get to more than 3 variables, it becomes challenging to use truth tables
- We can instead use Karnaugh Maps to make it immediately apparent as to what can be simplified

Your To-Dos

- Start Lab 6 on Thursday

