

Introduction to Digital Logic

CS 64: Computer Organization and Design Logic Lecture #11 Winter 2020

> Ziad Matni, Ph.D. Dept. of Computer Science, UCSB

Administrative

- Lab 6 out today
 - Due by next week **Thursday**
 - Extra time to finish it (it's challenging)
- Midterm Exam grades will be posted by the weekend

Lecture Outline

- Intro to Binary (Digital) Logic Gates
- Truth Table Construction
- Logic Functions and their Simplifications
- The Laws of Binary Logic

- Electronic circuits when used in computers are a series of switches
- 2 possible states: either ON (1) and OFF (0)

• Perfect for binary logic representation!

Basic Building Blocks of Digital Logic

• Same as the bitwise operators:

NOT AND OR XOR

etc...

• We often refer to these as "logic gates" in digital design

Electronic Circuit Logic Equivalents

Graphical Symbols and Truth Tables *NOT*

Α	A or !A
0	1
1	0

Graphical Symbols and Truth Tables *AND* and *NAND*

Graphical Symbols and Truth Tables *OR and NOR*

Graphical Symbols and Truth Tables XOR and XNOR

 \mathbf{O}

 \mathbf{O}

1

Constructing Truth Tables

- T.Ts can be applied to ANY digital circuit
- They show ALL possible inputs with ALL possible outputs
- Number of entries in the T.T.
 - = 2^{N} , where N is the number of **inputs**

Example: Constructing the T.T of a 1-bit Adder

- Recall the 1-bit adder:
- **3 inputs**: I_1 and I_2 and C_1
 - Input1, Input2, and Carry-In
 - How many entries in the T.T. is that?
- 2 outputs: R and C_o
 - Result, and Carry-Out
 - You can have multiple outputs: each will still depend on *some combination* of the inputs

Example: Constructing the T.T of a 1-bit Adder

T.T Construction Time!

Example: Constructing the T.T of a 1-bit Adder

			INPUTS		Ουτ	PUTS
	#	11	12	CI	CO	R
	0	0	0	0	0	0
Note the	1	0	0	1	0	1
order of the inputs!!!	2	0	1	0	0	1
	3	0	1	1	1	0
	4	1	0	0	0	1
	5	1	0	1	1	0
	6	1	1	0	1	0
	7	1	1	1	1	1

Logic Functions

An output function F can be seen as a combination of 1 or more inputs

- Example: F = A . B + C (all single bits)
- This is called **combinatorial logic**

Equivalent in C/C++:

```
boolean f (boolean a, boolean b, boolean c)
{
    return ( (a & b) | c );
}
```

OR and AND as Sum and Product

- Logic functions are often expressed with basic logic building blocks, like ORs and ANDs and NOTs, etc...
- OR is sometimes referred to as "logical sum" or "logical union"
 - Partly why it's symbolized as "+"
 - <u>BUT IT'S NOT THE SAME AS NUMERICAL ADDITION!!!!!!</u>
- AND as "logical product" or "logical disjunction"
 - Partly why it's symbolized as "."
 - <u>BUT IT'S NOT THE SAME AS NUMERICAL MULTIPLICATION!!!!!!</u>

Example

Α	B	A+B	• A XOR B takes the (i.e. is TRUE) <i>if an</i>	value "1" d only if	
0	0	0	• A = 0, B = 1 i.e. !/	A.B is TRUE,	<u>or</u>
0	1	1	• A = 1, B = 0 i.e. A	B is TRUE	
1	0	1	• In other words,	A XOR B	is TRUE
1	1	0	ITT (II and Only II)	A:P + ;AP	ISTRUE

A + B = !A.B + A.!BWhich can also be written as: $\overline{A}.B + A.\overline{B}$

Representing the Circuit Graphically

What is The Logical Function for The **Half Adder**?

I ₁ I ₂		IN	INPUTS OUTPUT		
\downarrow \downarrow	#	11	12	CO	R
$+ \rightarrow C_{\circ}$	0	0	0	0	0
	1	0	1	0	1
	2	1	0	0	1
R	3	1	1	1	0
$\begin{array}{c} + \\ + \\ \hline \\ + \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0 1 2 3	0 0 1 1	0 1 0 1	0 0 0 1	0 1 1 0

Half Adder 1-bit adder that does not have a Carry-In (Ci) bit.

This logic block has only 2 1-bit inputs and 2 1-bit outputs

Our attempt to describe the outputs as functions of the inputs:

$$CO = I_1 \cdot I_2$$

R = I_1 + I_2

What is The Logical Function for A **Full** 1-bit adder?

#	11	12	CI	CO	R	
0	0	0	0	0	0	
1	0	0	1	0	1	
2	0	1	0	0	1	
3	0	1	1	1	0	
4	1	0	0	0	1	
5	1	0	1	1	0	
6	1	1	0	1	0	
7	1	1	1	1	1	

Ans.:

CO = !|1.|2.C| + |1.!|2.C| + |1.|2.!C| + |1.|2.C|R = !|1.!|2.C| + !|1.|2.!C| + |1.!|2.!C| + |1.!|2.!C|

Matni, CS64, Wi20

Minimization of Binary Logic

- Why?
 - It's MUCH easier to read and understand...
 - Saves memory (software) and/or physical space (hardware)
 - Runs faster / performs better
 - Why?... remember *latency*?
- For example, when we do the T.T. for (see demo on board):
 X = A.B + A.!B + B.!A, we find that it is the same as
 A + B
 (saved ourselves a bunch of logic gates!)

Using T.Ts vs. Using Logic Rules

 In an effort to simplify a logic function, we don't always have to use T.Ts – we can use *logic rules* instead

Example: What are the following logic outcomes?

A . A	A
A + A	A
A.1	A
A+1	1
A.0	0

Using T.Ts vs. Using Logic Rules

•Binary Logic works in Associative ways

- •(A.B).C *is the same as* A.(B.C)
- (A+B)+C is the same as A+(B+C)

•It also works in **Distributive** ways

- (A + B).C *is the same as:* **A.C + B.C**
- (A + B).(A + C) is the same as:

A.A + A.C + B.A + B.C

- = A + A.C + A.B + B.C
- = A + B.C

More Examples of Minimization *a.k.a Simplification*

• Simplify: R = A.B + !A.B = (A + !A).B = B

> Note: often, the AND dot symbol (.) is omitted, but understood to be there (like with multiplication dot symbol)

- Simplify: R = |ABCD + ABCD + |AB|CD + AB|CD= BCD(A + |A) + |AB|CD + AB|CD
 - = BCD + B!CD(!A + A)
 - = BCD + B**!**CD
 - = BD(C + !C)

Let's verify it with a truth-table

More *Simplification* Exercises

• Simplify: R = |A|BC + |A|B|C + |ABC + |AB|C + A|BC= |A|B(C + |C) + |AB(C + |C) + A|BC= |A|B + |AB + A|BC= |A(|B + B) + A|BC= |A + A|BC

You can verify it with a truth-table

• Reformulate using **only** AND and NOT logic:

$$R = !AC + !BC$$

= C (!A + !B)
= C. !(A.B) \leftarrow De Morgan's

Law

Important: Laws of Binary Logic

Circuit Equivalence - each law has 2 forms that are duals of each other.

Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	AĀ = 0	A + Ā = 1
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

More Simplification Examples

Simplify the Boolean expression:

• (A+B+C).(D+E)' + (A+B+C).(D+E)

Simplify the Boolean expression and write it out on a truth table as proof

• X.Z + Z.(X'+ X.Y)

Use DeMorgan's Theorm to re-write the expression below using at least one OR operation

• NOT(X + Y.Z)

- When we get to *more* than 3 variables, it becomes challenging to use truth tables
- We can instead use *Karnaugh Maps* to make it immediately apparent as to what can be simplified

• Start Lab 6 on Thursday

