
MIPS Functions
CS 64: Computer Organization and Design Logic

Lecture #9
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

This Week on
“Didja Know Dat?!”

Xerox PARC (the research arm of the main company)
invented the first GUI in the early 1970s and
developed the Alto Computer to show it off, along
with the first mouse input device AND the first
Ethernet communication port, but Xerox thought it
was all useless (how could those things sell copy
machines??)

Steve Jobs and his frenemy Bill Gates took a tour of
Xerox PARC in the early 80s, looking for new ideas.
They were shown all of this and were told Xerox
wouldn’t care much if anyone used the tech!

Right away, Jobs went on to invent the Macintosh
Computer (which had the first ever commercial GUI-
based OS + mouse) & Gates went on to develop
Windows OS (which quickly overtook Mac OS sales).

Moral of the Story? Don’t be shortsighted like Xerox…

Administrative

•Midterm is next week: Wed. Feb. 12th

• I’ll post practice questions by Friday

•Q:
Is there a new lab coming up (given the midterm)?
•A:

YES! Will be put up tonight!

2/5/20 Matni, CS64, Wi20 3

What’s on the Midterm?

What’s on It?
• Everything we’ve done so far from start thru Monday, 2/10

What Should I Bring?
• Your pencil(s), eraser, MIPS Reference Card (on 1 page)
• THAT’S ALL!

What Else Should I Do?
• IMPORTANT: Come to the classroom 5-10 minutes EARLY
• If you are late, I may not let you take the exam
• I will have some of you re-seated
• Bring your UCSB ID

2/5/20 Matni, CS64, Wi20 4

Lecture Outline

• Intro to the MIPS Calling Convention

•Using the stack in MIPS Assembly

2/5/20 Matni, CS64, Wi20 5

Any Questions From Last Lecture?

2/5/20 Matni, CS64, Wi20 6

Functions

• Up until this point, we have not discussed functions

•Why not?
• If you want to do functions, you need to use the stack
• Memory management is a must for the call stack ...

though we can make some progress without it

• Think of recursion…
• How many variables are we going to need ahead of time?
• What memory do we end up using in recursive functions?
• We don’t always know…

2/5/20 Matni, CS64, Wi20 7

Implementing Functions

What capabilities do we need for functions?
1. Ability to execute code elsewhere

• Branches and jumps

2. Way to pass arguments in and out of the function
• There’s a way (a.k.a a convention) to do that that we’ll

learn about
•We’ll use the registers to do function I/O

2/5/20 Matni, CS64, Wi20 8

Jumping to Code

•We have ways to
jump unconditionally
to code (j instruction)

• But what about jumping back?
• That is, after you’re done with a function?
• We’ll need a way to save where we were (so we can “jump” back)

•Q: What do need so that we can do this on MIPS?
• A: A way to store the program counter ($PC) multiple times

(to tell us where the next instruction is so that we know where to return!)

2/5/20 Matni, CS64, Wi20 9

Calling Functions on MIPS

•Two crucial instructions: jal and jr
•One specialized register: $ra

•jal (jump-and-link)
• Simultaneously jump to an address, and store the

location of the next instruction in register $ra

•jr (jump-register)
• Jump to the address stored in a register, often $ra

2/5/20 Matni, CS64, Wi20 10

Simple Call Example

• See program: simple_call.asm

2/5/20 Matni, CS64, Wi20 11

Calls a function (test) which immediately returns
.text
test: # return to whoever made the call

jr $ra

main: # do stuff…
then call the test function
jal test

exit: # exit
li $v0, 10
syscall

Note: SPIM always
starts execution at the
line labeled “main”

Passing and Returning Values

•We want to be able to call arbitrary functions
without knowing the implementation details

•So, we need to know our pre-/post-conditions

•Q: How might we achieve this in MIPS?
• A: We designate specific registers

for arguments and return values

2/5/20 Matni, CS64, Wi20 12

Passing and Returning Values in MIPS

•Registers $a0 thru $a3
• Argument registers, for passing function arguments

•Registers $v0 and $v1
• Return registers, for passing return values

•What if we want to pass >4 args?
• There are ways around that…

but we won’t discuss them in CS64…!

2/5/20 Matni, CS64, Wi20 13

Function Calls Within Functions…

Given what we’ve said so far…
•What about this code makes our

previously discussed setup break?
• ANS: You would need multiple copies of $ra

2/5/20 Matni, CS64, Wi20 14

• You’d have to copy the value of $ra somewhere before
calling another function

• Danger: You could run out of registers!

Another Example…

What about this code makes this setup break?
• Can’t fit all variables in registers at the same time!

• How do I know which
registers are even
usable without
looking at the code?

2/5/20 Matni, CS64, Wi20 15

Solution??!!

2/5/20 Matni, CS64, Wi20 16

•Store certain information in memory only at certain
times

•Ultimately, this is where the call stack comes from

•So are there rules for how to do this?

What Saves What?

• By MIPS convention, certain registers are designated to be preserved
across a call

• Preserved registers are saved by the
function called (e.g., $s0 - $s7)

• So these should be saved at the start of every function

• Non-preserved registers are saved by
the caller of the function (e.g., $t, $a, $v regs)

• So these should be saved by the function’s caller IF THAT IS NEEDED
• Or not… (the usual route)

2/5/20 Matni, CS64, Wi20 17

And Where is it Saved?

•Register values are saved on the stack

•The top of the stack is held in $sp (stackpointer)

•Weirdness of MIPS (and other CPUs):
The stack grows
from high addresses to low addresses

2/5/20 Matni, CS64, Wi20 18

The Stack

When a program starts
executing, a certain
contiguous section of
memory is set aside for
the program called the
stack.

2/5/20 Matni, CS64, Wi20 19

Bottom of the stack
(Higher address in MIPS)

Top of the stack
(Lower address in MIPS)

The Stack

• The stack pointer is a
register ($sp) that
contains the top of the
stack.

•$sp contains the
smallest address x such
that any address
smaller than x is
considered garbage,
and any address
greater than or equal
to x is considered valid.
2/5/20 Matni, CS64, Wi20 20

The Stack

• In this example, $sp
contains the value
0x0000 1000.

•The shaded region of
the diagram
represents valid parts
of the stack.

2/5/20 Matni, CS64, Wi20 21

The Stack

• Stack Bottom: The largest
valid address of a stack.

• When a stack is initialized,
$sp points to the stack
bottom.

• Stack Limit: The smallest
valid address of a stack.

• If $sp gets smaller than
this, then we get a
stack overflow error
2/5/20 Matni, CS64, Wi20 22

2/5/20 Matni, CS64, Wi20 23

STACK (LIFO) PUSH AND POP

Stack Push and Pop

•To PUSH one or more registers
• Subtract 4 times the number

of registers to be pushed
on the stack pointer

• Why????

• Let’s say we want to store 2 registers’ data into the stack…
• Copy the registers to the stack (do a sw instruction) Example:

addi $sp, $sp, -8 # 2 registers to save
sw $s0, 4($sp)
sw $s1, 0($sp)

2/5/20 Matni, CS64, Wi20 24

Stack Push and Pop

• To POP one or more registers
• Reverse process from push
• Copy the data from the stack

to the registers (do a lw instruction)
• Add 4 times the number of registers

to be popped on the stack.
Example:

lw $s0, 4($sp)
lw $s1, 0($sp)
addi $sp, $sp, 8 # 2 registers to restore
Note: you cannot do the addi first

2/5/20 Matni, CS64, Wi20 25

save_registers.asm

• The program will look at 2 integers (a0, a1) and ultimately
returns (a0 + a0) + (a1 + a1) via a function call (i.e. jal)

• The function will first create room for 2 words on the stack
• It will push $s0 & $s1 onto the stack
• We’ll use $s0 and $s1

b/c we want them to be preserved across a call

• It will calculate the returned value and put the result in $v0

•We will then restore the original registers
• It will pop 2 words from the stack & place them in $s0 & $s1

2/5/20 Matni, CS64, Wi20 26

.data
solution_text: .asciiz "Solution: "
saved_text: .asciiz "Saved: "
newline: .asciiz "\n”
.text
$a0: first integer
$a1: second integer
Returns ($a0 + $a0) + ($a1 + $a1) in $v0.
Uses $s0 and $s1 as part of this process because these are preserved across a call.
add_ints must therefore save their values internally using the stack.
add_ints:

save $s0 and $s1 on the stack (i.e. push)
addi $sp, $sp, -8 # make room for two words
sw $s0, 4($sp) # note the non-zero offset
sw $s1, 0($sp)

calculate the value
add $s0, $a0, $a0
add $s1, $a1, $a1
add $v0, $s0, $s1

because t-registers are assumed to not be preserved, we can modify them **and it will not
matter**

li $t0, 4242
li $t3, -12345678

restore the registers and return (i.e. pop)
lw $s1, 0($sp)
lw $s0, 4($sp)
addi $sp, $sp, 8
jr $ra

save_registers.asm

Matni, CS64, Wi20 27

main:
setup the function call and make it
li $a0, 3
li $a1, 7
jal add_ints

print out the solution prompt
move $t1, $v0 # First, save what’s on $v0!!! (why???)
li $v0, 4
la $a0, solution_text
syscall

print out the solution itself
li $v0, 1
move $a0, $t1
syscall

print out a newline and end (not shown)
la $a0, newline
li $v0, 4
syscall

save_registers.asm

2/5/20 28

What is a Calling Convention?

• It’s a protocol about how you call functions
and how you are supposed to return

from them

• Every CPU architecture has one
• They can differ from one arch. to another

• 3 Reasons why we care:
• Because it makes programming a lot easier if everyone agrees to the same

consistent (i.e. reliable) methods
• Makes testing a whole lot easier
• I will ask you to use it in assignments and in exams!

• And you loose major points (or all of them) if you don’t…

2/5/20 Matni, CS64, Wi20 29

More on the “Why”

• Have a way of implementing functions in assembly
• But not a clear, easy-to-use way to do complex functions

• In MIPS, we do not have an inherent way of doing nested/recursive
functions
• Example: Saving an arbitrary amount of variables

• Example: Jumping back to a place in code recursively

• There is more than one way to do things
• But we often need a convention to set working parameters

• Helps facilitate things like testing and inter-compatibility

• This is partly why MIPS has different registers for different uses
2/5/20 Matni, CS64, Wi20 30

MIPS C.C. for CS64: Assumptions

•We will not utilize $fp and $gp regs
• $fp: frame pointer
• $gp: global pointer

• Assume that functions will not take more than 4 arguments
and will not return more than 2 arguments
• Makes our lives a little simpler…

• Assume that all values on the stack are always 32-bits
• That is, no overly long data types or complex data structures like

C-Structs, Classes, etc…

2/5/20 Matni, CS64, Wi20 31

YOUR TO-DOs

IMPORTANT:
Read the MIPS Calling Convention PDF on the class
website!

•Review ALL the demo codes
• Available via the class website

•Work on Lab #5

•Start studying for the Midterm Exam! J

2/5/20 Matni, CS64, Wi20 32

2/5/20 Matni, CS64, Wi20 33

