
MIPS Addressing
MIPS Instructions

CS 64: Computer Organization and Design Logic
Lecture #8

Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

This
Week on

“Didja
Know

Dat?!”

Steve Wozniak and Steve Job’s first commercial
venture was the Apple 1 in 1976 using an 8-bit MOS
6502 CPU. It was built for $500 and initially sold for
$666.66 because Wozniak “liked repeating digits”
(about $2900 in today’s dollars). Keyboard and TV not
included. They sold about 200 of them in 10 months,
thus assuring the continuation of their company.

Previously, the only other popular “personal”
computer was the Altair 8800, which you had to
operate with switches!

Administrative

• Lab 4 due tomorrow!

2/3/2020 Matni, CS64, Wi20 3

Lecture Outline

• MIPS Instructions
• How they are represented

• Overview of Functions in MIPS

2/3/2020 Matni, CS64, Wi20 4

Midterm Exam (Wed. 2/12)

What’s on It?
• Everything we’ve done so far from start to Monday, 2/10

What Should I Bring?
• Your pencil(s), eraser, MIPS Reference Card (on 1 page)
• THAT’S ALL!

What Else Should I Do?
• IMPORTANT: Come to the classroom 5-10 minutes EARLY
• If you are late, I may not let you take the exam
• IMPORTANT: Use the bathroom before the exam – once inside, you cannot leave
• I will have some of you re-seated
• Bring your UCSB ID

2/3/2020 Matni, CS64, Wi20 5

Any Questions From Last Lecture?

2/3/2020 Matni, CS64, Wi20 6

Let’s review the array exercise…

.data
newline: .asciiz "\n"
myArray: .word 5 32 87 95 286 386
myArrayLength: .word 6

.text
main:

t0: x
initialize x
li $t0, 0
get myArrayLength, put result in $t2
$t1 = &myArrayLength
la $t1, myArrayLength
lw $t2, 0($t1)

loop:
see if x < myArrayLength
put result in $t3
slt $t3, $t0, $t2

jump out if not true
beq $t3, $zero, end_main

int myArray[]
= {5, 32, 87, 95, 286, 386};

int myArrayLength = 6;
int x;

for (x = 0; x < myArrayLength; x++)
{

print(myArray[x]);
print("\n");

}

get the base of myArray
la $t4, myArray

figure out where in the array we need
to read from. This is going to be the array
address + (index << 2). The shift is a
multiplication by four to index bytes
as opposed to words.
Ultimately, the result is put in $t7
sll $t5, $t0, 2
add $t6, $t5, $t4
lw $t7, 0($t6)

print x[i] out, with a newline
li $v0, 1
move $a0, $t7
syscall
li $v0, 4
la $a0, newline
syscall

increment index
addi $t0, $t0, 1

restart loop
j loop

end_main:
exit the program
li $v0, 10
syscall

2/3/2020 Matni, CS64, Wi20 10

This is found on your
MIPS Reference Card

NOTE:
Not all memory addresses
can be accessed by the
programmer.

Although the address
space is 32 bits, the top
addresses from
0x80000000 to 0xFFFFFFFF
are not available to user
programs. They are used
mostly by the OS.

How much memory does a
programmer get to directly

use in MIPS?

Memory Allocation Map

Mapping MIPS Memory
(say that 10 times fast!)

• Imagine computer memory like a big array of words
• Size of computer memory is:

232 = 4 Gbits, or 512 MBytes (MB)
• We only get to use 2 Gbits, or 256 MB
• That’s (256 MB/ groups of 4 B) = 64 million words

2/3/2020 Matni, CS64, Wi20 11

8 bits 8 bits 8 bits 8 bits
word

MIPS Computer Memory
Addressing Conventions

2/3/2020 Matni, CS64, Wi20 12

1A 80 C5 29

52 00 37 EE

B1 11 1A A5

0x0000 0x0001 0x0002 0x0003

0x0004 0x0005 0x0006 0x0007

0x0008 0x0009 0x000A 0x000B

A

MIPS Computer Memory
Addressing Conventions

2/3/2020 Matni, CS64, Wi20 13

1A 80 C5 29

52 00 37 EE

B1 11 1A A5

0x0003 0x0002 0x0001 0x0000

0x0007 0x0006 0x0005 0x0004

0x000B 0x000A 0x0009 0x0008

B

or...

A Tale of 2 Conventions…

2/3/2020 Matni, CS64, Wi20 14

BIG END (MSByte)
gets addressed first

LITTLE END (LSByte)
gets addressed first

The Use of Big Endian vs. Little Endian

Origin: Jonathan Swift (author) in “Gulliver's Travels”.
Some people preferred to eat their hard boiled eggs from the “little

end” first (thus, little endians), while others prefer to eat from
the “big end” (i.e. big endians).

• MIPS users typically go with Big Endian convention
• MIPS allows you to program “endian-ness”

• Most Intel processors go with Little Endian…

• It’s just a convention – it makes no difference to a CPU!

2/3/2020 Matni, CS64, Wi20 15

MIPS Reference Card

• Let’s take another close look at that card…

2/3/2020 Matni, CS64, Wi20 16

Instruction Representation

Recall: A MIPS instruction has 32 bits
32 bits are divided up into 6 fields (aka the R-Type format)
• op code 6 bits basic operation
• rs code 5 bits first register source operand
• rt code 5 bits second register source operand
• rd code 5 bits register destination operand
• shamt code 5 bits shift amount
• funct code 6 bits function code

2/3/2020 Matni, CS64, Wi20 17

op
6 b

31 – 26

funct
6 b
5 – 0

rs
5 b

25 – 21

rt
5 b

20 – 16

rd
5 b

15 – 11

shamt
5 b

10 – 6

Why did the
designers allocate

5 bits for registers?

Instruction Representation in R-Type

• The combination of the opcode and the funct code tell the
processor what it is supposed to be doing

• Example:
add $t0, $s1, $s2

op = 0, funct = 32 mean “add”
rs = 17 means “$s1”
rt = 18 means “$s2”
rd = 8 means “$t0”
shamt = 0 means this field is unused in this instruction

2/3/2020 Matni, CS64, Wi20 18

op
0

funct
32

rs
17

rt
18

rd
8

shamt
0

A full list of codes can be
found in your

MIPS Reference Card

Exercises

• Using your MIPS Reference Card, write the 32 bit
instruction (using the R-Type format and decimal
numbers for all the fields) for the following:

add $t3, $t2, $s0
addu $a0, $a3, $t0
sub $t1, $t1, $t2

2/3/2020 Matni, CS64, Wi20 19

0x01505820
0x00E82021
0x012A4822

Exercise: Example Run-Through

• Using your MIPS Reference Card, write the 32 bit
instruction (using the R-Type format) for the
following. Express your final answer in hexadecimal.

add $t3, $t2, $s0

2/3/2020 Matni, CS64, Wi18 20

op (6b)
0

funct (6b)
32

rs (5b)
10

rt (5b)
16

rd (5b)
11

shamt (5b)
0

000000 0 1010 1 0000 0 1011 0 0000 10 0000
00000001010100000101100000100000

0x01505820

0x01505820

A Second Type of Format…

32 bits are divided up into 4 fields (the I-Type format)
• op code 6 bits basic operation
• rs code 5 bits first register source operand
• rt code 5 bits second register source operand
• address code 16 bits constant or memory address

Note: The I-Type format uses the address field to access ±215

addresses from whatever value is in the rs field

2/3/2020 Matni, CS64, Wi20 21

op
6 b

31 – 26

rs
5 b

25 – 21

rt
5 b

20 – 16

address
16 b
15 – 0

Ans: 215 - 1

I-Type Format

• The I-Type address field is a
signed number

• The addi instruction is an
I-Type, example:

addi $t0, $t1, 42
• What is the largest, most positive,

number you can put as an
immediate?

2/3/2020 Matni, CS64, Wi20 22

Instruction Representation in I-Type

• Example:
addi $t0, $s0, 124

op = 8 mean “addi”
rs = 16 means “$s0”
rt = 8 means “$t0”
address/const = 124 is the immediate value

2/3/2020 Matni, CS64, Wi20 23

op
8

address/const
124

rs
16

rt
8

A full list of codes can be
found in your

MIPS Reference Card

Exercises

• Using your MIPS Reference Card, write the 32 bit
instruction (using the I-Type format and decimal
numbers for all the fields) for the following:

addi $t3, $t2, -42
andi $a0, $a3, 1
slti $t8, $t8, 14

2/3/2020 Matni, CS64, Wi20 24

0x214BFFD6
0x30E40001
0x2B18000E

YOUR TO-DOs

• Do readings!
• Check syllabus for details!

• Turn in Assignment #4

2/3/2020 Matni, CS64, Wi20 25

2/3/2020 Matni, CS64, Wi20 26

	MIPS Addressing�MIPS Instructions
	Slide Number 2
	Administrative
	Lecture Outline
	Midterm Exam (Wed. 2/12)
	Any Questions From Last Lecture?
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Memory Allocation Map
	Mapping MIPS Memory�(say that 10 times fast!)
	MIPS Computer Memory �Addressing Conventions
	MIPS Computer Memory �Addressing Conventions
	A Tale of 2 Conventions…
	The Use of Big Endian vs. Little Endian
	MIPS Reference Card
	Instruction Representation
	Instruction Representation in R-Type
	Exercises
	Exercise: Example Run-Through
	A Second Type of Format…
	I-Type Format
	Instruction Representation in I-Type
	Exercises
	YOUR TO-DOs
	Slide Number 26

