
Accessing Memory in MIPS
CS 64: Computer Organization and Design Logic

Lecture #7
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB



1/29/20 Matni, CS64, Wi20 2

One of the first programmable computers ever built for general 
and commercial purposes was the Electronic Numerical 
Integrator and Computer (ENIAC) in 1945.

It was 27 tons and took up 1800 square feet.
It used 160 kW of power (about 3000 light bulbs worth)
It cost $6.3 million in today’s money to purchase.

Comparing today’s cell 
phones (with dual CPUs), 
with ENIAC, we see they…

cost 17,000X less
are 40,000,000X smaller
use 400,000X less power
are 120,000X lighter
AND…
are 1,300X more powerful.

This Week on 
“Didja Know Dat?!”



Lecture Outline

• Loop Instructions

• Addressing MIPS Memory

• Global Variables

• Arrays

1/29/20 Matni, CS64, Wi20 3



Any Questions From Last Lecture?

1/29/20 Matni, CS64, Wi20 4



Pop Quiz!
• You have 5 minutes to fill in the missing code. You can use your MIPS 

Reference Card.
• Fill in the 4 blank spaces :

main: # assume $t0 has been declared earlier (not here)
li $t1, 0
li ________________
blt _________________________
li $t1, 1

exit: ________________________
________________________

1/29/20 Matni, CS64, Wi20 6

In C++, the code would be:
if (t0 >= -77)

t1 = 1;
else 

t1 = 0;

$t2, -77        # something to compare!
$t0, $t2, exit

li $v0, 10
syscall



.data Declaration Types
w/ Examples

var1:   .byte 9        # declare a single byte with value 9
var2:   .half 63       # declare a 16-bit half-word w/ val. 63
var3:   .word 9433     # declare a 32-bit word w/ val. 9433
num1:   .float 3.14    # declare 32-bit floating point number
num2:   .double 6.28   # declare 64-bit floating pointer number
str1:   .ascii "Text"  # declare a string of chars        
str3:   .asciiz "Text" # declare a null-terminated string
str2:   .space 5       # reserve 5 bytes of space (useful for arrays)

These are now reserved in memory and we can call them up by 
loading their memory address into the appropriate registers.
Highlighted ones are the ones most commonly used in this class.

1/29/20 Matni, CS64, Wi20 8



• li Load Immediate
• Use this when you want to put an integer value

into a register

• Example:        li $t0, 42

• la Load Address
• Use this when you want to put an address value into a register

• Example:        la $t0, LilSebastian

where “LilSebastian” is a pre-defined label for something 
in memory (defined under the .data directive).

1/29/20 Matni, CS64, Wi20 9

li vs la



1/29/20 Matni, CS64, Wi20 10

Example
What does this do?

.data
name: .asciiz “Jimbo Jones is ”
rtn: .asciiz “ years old.\n”

.text
main:

li $v0, 4
la $a0, name # la = load memory address
syscall

li $v0, 1
li $a0, 15
syscall

li $v0, 4
la $a0, rtn
syscall

li $v0, 10
syscall

What goes in here? à

What goes in here? à



Larger Data Structures

• Recall: registers vs. memory
• Where would data structures, arrays, etc. go?
• Which is faster to access? Why?

• Some data structures have to be stored in memory
• So we need instructions that “shuttle” data to/from the 

CPU and computer memory (RAM)

1/29/20 Matni, CS64, Wi20 11



Accessing Memory

• Two base instructions: 
• load-word (lw) from memory to registers
• store-word (sw) from registers to memory

• MIPS lacks instructions that do more with memory than access it 
(e.g., retrieve something from memory and then add)

• Operations are done step-by-step
• Mark of RISC architecture

1/29/20 Matni, CS64, Wi20 12

Memory
Rs

lw

sw



1/29/20 Matni, CS64, Wi20 13

.data
num1: .word 42
num2: .word 7
num3: .space 1

.text
main:

lw $t0, num1
lw $t1, num2
add $t2, $t0, $t1
sw $t2, num3

li $v0, 1
lw $a0, num3
syscall

li $v0, 10
syscall

Example 4
What does this do?

Memory
Rs

lw

sw



1/29/20 Matni, CS64, Wi20 14

.data
num1: .word 42 # define 32b w/ value = 42
num2: .word 7 # define 32b w/ value = 7
num3: .space 1 # define one (1) 32b space

.text
main:

lw $t0, num1 # load what’s in num1 (42) into $t0
lw $t1, num2 # load what’s in num2 (7) into $t1
add $t2, $t0, $t1 # ($t0 + $t1) à $t2
sw $t2, num3 # load what’s in $t2 (49) into num3 space

li $v0, 1
lw $a0, num3 # put the number you want to print in $a0
syscall # print integer

li $v0, 10 # exit
syscall

Example 4

Memory
Rs

lw

sw



Addressing Memory

• If you’re not using the .data declarations, then you need starting addresses of 
the data in memory with lw and sw instructions

Example: lw $t0, 0x0000400A  ß not a real address, just looks like one…

Example: lw $t0, 16($s0)

• 1 word = 32 bits (in MIPS)
• So, in a 32-bit unit of memory, that’s 4 bytes
• Represented with 8 hexadecimals 8 x 4 bits = 32 bits… checks out…

• MIPS addresses sequential memory addresses, but not in “words”
• Addresses are in Bytes instead
• MIPS words must start at addresses that are multiples of 4
• Called an alignment restriction 

1/29/20 Matni, CS64, Wi20 15



Global Variables

Recall:
• Typically, global variables are placed directly in memory, not 

registers

• lw and sw for load word and save word

• lw ≠ la ≠ move  !!!
• Syntax:

lw register_destination,   N(register_with_address)
Where N = offset of address in bytes

• Let’s take a look at: access_global.asm
1/29/20 Matni, CS64, Wi20 16



access_global.asm

Load Address (la) and Load Word (lw)

.data

myVariable: .word 42

.text

main:

la $t0, myVariable ß WHAT’S IN $t0??

lw $t1, 0($t0) ß WHAT DID WE DO HERE??

li $v0, 1

move $a0, $t1

syscall ß WHAT SHOULD WE SEE HERE??

1/29/20 Matni, CS64, Wi20 17

$t0 = &myVariable



access_global.asm

Store Word (sw)    (…continuing from last page…)

li $t1, 5

sw $t1, 0($t0) ß WHAT’S IN $t0 AGAIN??

li $t1, 0

lw $t1, 0($t0) ß WHAT DID WE DO HERE??

li $v0, 1

move $a0, $t1

syscall ß WHAT SHOULD WE SEE HERE??
1/29/20 Matni, CS64, Wi20 18



Arrays

• Question: 
As far as memory is concerned, what is the major difference 
between an array and a global variable?

• Arrays contain multiple elements

• Let’s take a look at:
• print_array1.asm
• print_array2.asm
• print_array3.asm

1/29/20 Matni, CS64, Wi20 19



print_array1.asm

int myArray[] = {5, 32, 87, 95, 286, 386};
int myArrayLength = 6;
int x;

for (x = 0; x < myArrayLength; x++) 
{

print(myArray[x]);
print("\n");

}

1/29/20 Matni, CS64, Wi20 20



1/29/20 Matni, CS64, Wi20 21

Flow Chart for 
print_array1

N

Y



# C code:

# int myArray[] = 

#     {5, 32, 87, 95, 286, 386}

# int myArrayLength = 6

# for (x = 0; x < myArrayLength; x++) {

#   print(myArray[x])

#   print("\n") }
.data

newline: .asciiz "\n"

myArray: .word 5 32 87 95 286 386

myArrayLength: .word 6

.text

main:

# t0: x

# initialize x

li $t0, 0

loop:

# get myArrayLength, put result in $t2

# $t1 = &myArrayLength
la $t1, myArrayLength

lw $t2, 0($t1)

# see if x < myArrayLength

# put result in $t3

slt $t3, $t0, $t2

# jump out if not true
beq $t3, $zero, end_main

# get the base of myArray
la $t4, myArray

# figure out where in the array we need 
# to read from. This is going to be the array 
# address + (index << 2). The shift is a 
# multiplication by four to index bytes
# as opposed to words.  
# Ultimately, the result is put in $t7
sll $t5, $t0, 2
add $t6, $t5, $t4
lw $t7, 0($t6)

# print it out, with a newline
li $v0, 1
move $a0, $t7
syscall
li $v0, 4
la $a0, newline
syscall

# increment index
addi $t0, $t0, 1

# restart loop
j loop

end_main:
# exit the program
li $v0, 10
syscall



print_array2.asm

• Same as print_array1.asm, except that in the assembly code, 
we lift redundant computation out of the loop.  

• This is the sort of thing a decent compiler (clang or gcc or 
g++, for example) will do with a HLL program

• Your homework: Go through this assembly code!

1/29/20 Matni, CS64, Wi20 23



print_array3.asm

int myArray[] 
= {5, 32, 87, 95, 286, 386};

int myArrayLength = 6;
int* p;

for (p = myArray; p < myArray + myArrayLength; p++) 
{

print(*p);
print("\n");

}

1/29/20 Matni, CS64, Wi20 24

Your homework: Go through this assembly code!



YOUR TO-DOs

• Do readings!
• Check syllabus for details!

• Review ALL the demo codes 
• Available via the class website

• Assignment #4 for next lab!

1/29/20 Matni, CS64, Wi20 25



1/29/20 Matni, CS64, Wi20 26




