
Flow Control in
MIPS Assembly Language

CS 64: Computer Organization and Design Logic
Lecture #6

Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

1/27/20 Matni, CS64, Wi20 2

Legend: Adm. Grace Hopper coined the term "debugging" when a moth
was removed from the computer she was working on (see below)

Reality: The term “bug” was used in engineering in the 19th century.
As seen independently from various scientists,

including Ada Lovelace and Thomas Edison.

This Week
on

“Didja
Know

Dat?!”

Administrative

•How did lab03 go?

1/27/20 Matni, CS64, Wi20 3

Lecture Outline

•Operand Use

•Flow Control – branching and conditionals

1/27/20 Matni, CS64, Wi20 4

Any Questions From Last Lecture?

1/27/20 Matni, CS64, Wi20 5

A Note About Operands

•Operands in arithmetic instructions are limited and
are done in a certain order
• Arithmetic operations always happen in the registers

•Example: f = (g + h) – (i + j)
• The order is prescribed by the parentheses
• Let’s say, f, g, h, i, j are assigned to registers

$s0, $s1, $s2, $s3, $s4 respectively
•What would the MIPS assembly code look like?

1/27/20 Matni, CS64, Wi20 6

Example 1

f = (g + h) – (i + j)
i.e. $s0 = ($s1 + $s2) – ($s3 + $s4)

add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1

1/27/20 Matni, CS64, Wi20 7

add rd, rs, rt
destination, source1, source2

Syntax for “add”

Example 2

f = g * h - i
i.e. $s0 = ($s1 * $s2) – $s3

mult $s1, $s2
mflo $t0
mflo directs where the answer of the
mult should go

sub $s0, $t0, $s3

1/27/20 Matni, CS64, Wi20 8

The mult instruction

• To multiply 2 integers together:
li $t0, 5
li $t1, 7
mult $t1, $t0
mflo $t2

• mult cannot be used with an ‘immediate’ value
• So first, we load our multiplier into a register ($t0)
• Then we multiply this with out multiplicand ($t1)
• And we finally put the result in the final reg ($t2) using the mflo

instruction

1/27/20 Matni, CS64, Wi20 9

MIPS Peculiarity: NOR used as NOT

• MIPS does not have NOT
• How to make a NOT function using NOR instead
• Recall: NOR = NOT OR
• Truth-Table:

• So, in the absence of a NOT function,
use a NOR with a 0 as one of the inputs!

1/27/20 Matni, CS64, Wi20 10

A B A NOR B
0 0
0 1
1 0
1 1

1
0
0
0

Note that:

0 NOR x = NOT x

1/27/20 Matni, CS64, Wi20 11

Conditionals

•What if we wanted to do:

if (x == 0) { cout << “x is zero”; }
• Can we write this in assembly with what we know?
• No… we haven’t covered if-else (aka branching)

•What do we need to implement this?
• A way to compare numbers
• A way to conditionally execute code

1/27/20 Matni, CS64, Wi20 12

Relevant Instructions in MIPS
for use with branching conditionals

•Comparing numbers:
set-less-than (slt)

• Set some register (i.e. make it “1”) if a less-than
comparison of some other registers is true

•Conditional execution:
branch-on-equal (beq)
branch-on-not-equal (bne)

• “Go to” some other place in the code (i.e. jump)

1/27/20 Matni, CS64, Wi20 13

if (x == 0) { printf(“x is zero”); }

.data
x_is_zero: .asciiz “x is zero”

.text
bne $t0, $zero, after_print
li $v0, 4
la $a0, x_is_zero
syscall

after_print:
li $v0, 10
syscall

1/27/20 Matni, CS64, Wi20 14

Create a constant
string called
“x_is_zero”

If $t0 != 0 go to
the block
labeled as

“after_print”

End the
program

(otherwise) prepare to
print a string…

…and that string is
located at memory
address, labeled as

“x_is_zero”

Note
the
flow

Loops

•How might we translate the following C++ to assembly?

n = 3;
sum = 0;
while (n != 0)
{

sum += n;
n--;

}
cout << sum;

1/27/20 Matni, CS64, Wi20 15

n = 3; sum = 0;
while (n != 0) { sum += n; n--; }

.text
main:

li $t0, 3 # n
li $t1, 0 # running sum

loop:
beq $t0, $zero, loop_exit
addu $t1, $t1, $t0
addi $t0, $t0, -1
j loop

loop_exit:
li $v0, 1
move $a0, $t1
syscall

li $v0, 10
syscall

1/27/20 Matni, CS64, Wi20 16

Set up the variables in $t0, $t1

If $t0 == 0 go to “loop_exit”

(otherwise) make $t1 the (unsigned) sum of $t1
and $t0 (i.e. sum += n)

decrement $t0 (i.e. n--)
jump to the code labeled “loop”

(i.e. repeat loop)

end the program

prepare to print out an integer,
which is inside the $t1 reg. (i.e. print sum)

Let’s Run More Programs!!
Using SPIM

•More!!
• This time exploring conditional logic and loops

These assembly code programs are made available to you via
the class webpage

1/27/20 Matni, CS64, Wi20 17

More Branching Examples

int y;

if (x == 5)

{

y = 8;

}

else if (x < 7)

{

y = x + x;

}

else

{

y = -1;

}

print(y)
1/27/20 Matni, CS64, Wi20 18

.text
main: # t0: x and t1: y

li $t0, 5 # example
li $t2, 5 # what’s

this?
beq $t0, $t2, equal_5

check if less than 7
li $t2, 7
slt $t3, $t0, $t2
bne $t3, $zero, less_than_7

fall through to final else
li $t1, -1
j after_branches

equal_5:
li $t1, 8
j after_branches

less_than_7:
add $t1, $t0, $t0

could jump to after_branches,
but this is what we will fall
through to anyways

after_branches:
print out the value in y ($t1)

li $v0, 1
move $a0, $t1
syscall

exit the program
li $v0, 10
syscall

Larger Data Structures

•Recall: registers vs. memory
•Where would data structures, arrays, etc. go?
•Which is faster to access? Why?

•Some data structures have to be stored in memory
• So we need instructions that “shuttle” data to/from the

CPU and computer memory (RAM)
•We’ll see how arrays are done in assembly…

1/27/20 Matni, CS64, Wi20 19

Global Variables, Arrays, and Strings

• Typically, global variables are placed directly in memory and
not registers
• Why might this be?

• Ans: Not enough registers… esp. if there are multiple variables

•What do you think we do with arrays? Why?

•What do you think we do with strings? Why?

•We use the .data directive
• To declare variables, their values, and their names used in the program

• Storage is allocated in main memory (RAM)

1/27/20 Matni, CS64, Wi20 20

Now Let’s Make it a
Full Program (almost)

•We need to tell the assembler
(and its simulator) which bits
should be placed where in
memory

1/27/20 Matni, CS64, Wi20 21

Allocated as
program RUNs

Allocated at
program LOAD

Constants to be used in the
program (like strings)

mutable global variables

the text of the program

Marking the Code

•For the simulator, you’ll
need a .text directive to
specify code

1/27/20 Matni, CS64, Wi20 22

Allocated as
program RUNs

Allocated at
program LOAD

Constants to be used in the
program (like strings)

mutable global variables

the text of the program

.text

Main program
li $t0, 5
li $t1, 7
add $t3, $t0, $t1

Print to standard output
li $v0, 1
move $a0, $t3
syscall

End program
li $v0, 10
syscall

.data Declaration Types
w/ Examples

var1: .byte 9 # declare a single byte with value 9
var2: .half 63 # declare a 16-bit half-word w/ val. 63
var3: .word 9433 # declare a 32-bit word w/ val. 9433
num1: .float 3.14 # declare 32-bit floating point number
num2: .double 6.28 # declare 64-bit floating pointer number
str1: .ascii "Text" # declare a string of chars
str3: .asciiz "Text" # declare a null-terminated string
str2: .space 5 # reserve 5 bytes of space (useful for arrays)

These are now reserved in memory and we can call them up by
loading their memory address into the appropriate registers.
Highlighted ones are the ones most commonly used in this class.

1/27/20 Matni, CS64, Wi20 23

YOUR TO-DOs

•Do readings!
• Check syllabus for details!

•Review ALL the demo codes
• Available via the class website

•Work on Assignment #3

1/27/20 Matni, CS64, Wi20 24

1/27/20 Matni, CS64, Wi20 25

