
Intro to MIPS Assembly Language
CS 64: Computer Organization and Design Logic

Lecture #4
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Lecture Outline

•MIPS core processing blocks

•Basic programming in assembly

• Intro to SPIM use

1/15/20 Matni, CS64, Wi20 2

Any Questions From Last Lecture?

1/15/20 Matni, CS64, Wi20 3

5-Minute Pop Quiz!!!

YOU MUST SHOW YOUR WORK!!!
1. Calculate, give your answer in hexadecimal AND identify carry out (C)

and overflow (V) bit values:

(0xCE + 0xA9)

2. Convert from binary to decimal AND to hexadecimal. Use any
technique(s) you like:

1011011

1/15/20 Matni, CS64, Wi20 4

Answers…

1. Calculate, give your answer in hexadecimal, AND identify carry out
(C) and overflow (V) bit values: (0xCE + 0xA9)

2. Convert from binary to decimal AND hexadecimal. Use any
technique you like: 1011011

1/15/20 Matni, CS64, Wi20 5

1100 1110
+ 1010 1001
= 1 0111 0111 = 0x77

= 0101 1011 = 0x5B (collect-the-bits method)

= 64 + 16 + 8 + 2 + 1 = 91 (binary positional notation method)

OR 0x5B = 5x16 + 11 = 80 + 11 = 91
(hex positional notation method)

There is a carry out, so C = 1
There’s overflow (why?), so V = 1

Code on MIPS

Original

x = 5;
y = 7;
z = x + y;

1/15/20 Matni, CS64, Wi20 6

MIPS
li $t0, 5
li $t1, 7
add $t2, $t0, $t1

1/15/20 Matni, CS64, Wi20 7

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 8

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 9

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 10

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 11

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 12

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 13

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 14

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 15

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 16

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

1/15/20 Matni, CS64, Wi20 17

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.

Memory is addressed in Bytes
(more on this later).

Adding More Functionality

• Ok, so I know how to add 2 numbers in MIPS.
• Wow

• What about: display results???? Yes, that’s kinda important…

• What would this entail?
• Engaging with Input / Output part of the computer
• i.e. talking to devices

Q: What usually handles this?

• So we need a way to tell
the operating system to kick in

1/15/20 Matni, CS64, Wi20 18

A: the operating system

Also, Where’s My MIPS Computer???

• You’re not getting one.

•Who needs hardware when “cutting edge” software can do
the job?!?!?!?!

•We will be EMULATING a MIPS processor using software on
our Macs/Windows/Linux machines.

• Hence… SPIM… The MIPS Emulator!
• Something funny about that name…

1/15/20 Matni, CS64, Wi20 19

Talking to the OS

•We are going to be running on MIPS emulator called SPIM

•We’re not actually running our commands on an actual MIPS
(hardware) processor!!

…we’re letting software pretend it’s hardware…

…so, in other words… we’re “faking it”

• Ok, so how might we print something onto std.out?

1/15/20 Matni, CS64, Wi20 20

SPIM Routines

•MIPS features a syscall instruction, which
triggers a software interrupt, or exception

•Outside of an emulator (i.e. in the real world), these
instructions pause the program and tell the OS to
go do something with I/O

• Inside the emulator, it tells the emulator to go
emulate something with I/O

1/15/20 Matni, CS64, Wi20 21

syscall

•So we have the OS/emulator’s attention, but how
does it know what we want?

•The OS/emulator has access to the CPU registers

•We put special values (codes) in the registers to
indicate what we want
• These are codes that can’t be used for anything else, so

they’re understood to be just for syscall
• So… is there a “code book”????

1/15/20 Matni, CS64, Wi20 22

Yes! All CPUs come with manuals.
For us, we have the MIPS Ref. Card

syscall Interaction Setup

You will need:

•System call code
•Usually placed in $v0

•Argument
•Usually placed in $a0

1/15/20 Matni, CS64, Wi20 23

(Finally) Printing an Integer

• For SPIM, if register $v0 contains 1 and then we issue a syscall, then
SPIM will print whatever integer is stored in register $a0

ß this is a specific rule using a specific code
• Note: $v0 is used for other stuff as well – more on that later…
• When $v0=1, syscall is expecting an integer!

• Other values put into $v0 indicate other types of I/O calls to syscall
Examples:
• $v0 = 3 means double (or the mem address of one) in $a0
• $v0 = 4 means string (or the mem address of one) in $a0
• $v0 = 5 means get user input from std input and place in $v0
• We’ll explore some of these later, but check MIPS ref card for all of them

1/15/20 Matni, CS64, Wi20 24

(Finally) Printing an Integer

• Remember, the usual syntax to load immediate a value into a register is:

li <register>, <value>

Example: li $v0, 1 # PUTS THE NUMBER 1 INTO REG. $v0

• You can also move (copy) the value of one register into another too!
move <to register>, <from register>

Example: move $a0, $t0 # PUTS THE VALUE IN REG. $t0 INTO REG. $a0

To make sure that the register $a0 has the value of what you want to print out
(let’s say it’s in another register, like $t0), use the move command:

1/15/20 Matni, CS64, Wi20 25

Augmenting with Printing

Main program
li $t0, 5
li $t1, 7
add $t3, $t0, $t1

Print the integer that’s in $t3
to std.output
li $v0, 1
move $a0, $t3
syscall

1/15/20 Matni, CS64, Wi20 26

Program Files for MIPS Assembly

•The files have to be text

•Typical file extension type is .asm

•To leave comments,
use # at the start of the line

1/15/20 Matni, CS64, Wi20 27

We’re Not Quite Done Yet!
Exiting an Assembly Program in SPIM

• If you are using SPIM, then you need to say when
you are done as well
•Most HLL programs do this for you automatically

•How is this done?
• Issue a syscall with a special value in $v0 = 10

(decimal)

1/15/20 Matni, CS64, Wi20 28

Augmenting with Exiting
.text # We always have to have this starting line

Main program

li $t0, 5

li $t1, 7

add $t3, $t0, $t1

Print to std.output

li $v0, 1

move $a0, $t3

syscall

End program

li $v0, 10

syscall Matni, CS64, Wi20 29

Let’s Run This Program Already!
Using SPIM

•We’ll call it simpleadd.asm
•Run it on CSIL as: $ spim –f simpleadd.asm

•We’ll also run other arithmetic programs and
explain them as we go along
• TAKE NOTES!

1/15/20 Matni, CS64, Wi20 30

YOUR TO-DOs

•Do readings!
• Check syllabus for details!

•Get to Assignment #2
• You have to submit it into Gradescope as 2 parts
• PDF with answers to questions + Program (in C/C++)

• Due on Tuesday 1/21, by 11:59:59 PM

1/15/20 Matni, CS64, Wi20 31

1/15/20 Matni, CS64, Wi20 32

