
Logic Operations on Binaries
Intro to MIPS

CS 64: Computer Organization and Design Logic
Lecture #3

Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

1/13/20 Matni, CS64, Wi20 2

Why do CPU programmers celebrate
Christmas and Halloween

on the same day?

Because Oct-31 = Dec-25 !!!

Administrative Stuff

•Assignment 1 is due on Tuesday on Gradescope
§How was lab on Thursday?

•Assignment 2 will be issued soon

•Reminder: No class next week Monday (Uni. Holiday)

1/13/20 Matni, CS64, Wi20 3

Any Questions From Last Lecture?

1/13/20 Matni, CS64, Wi20 4

Practice on Binary Addition, etc…

See board…

• Addition
• Subtraction
• Carry Out (C)
• Overflow (V)

1/13/20 Matni, CS64, Wi20 5

Binary Logic Refresher
NOT, AND, OR

X NOT X
X

0 1
1 0

1/13/20 Matni, CS64, Wi20 6

X Y X OR Y
X || Y
X + Y

0 0 0
0 1 1
1 0 1
1 1 1

X Y X AND Y
X && Y

X.Y
0 0 0
0 1 0
1 0 0
1 1 1

Binary Logic Refresher
Exclusive-OR (XOR)

1/13/20 Matni, CS64, Wi20 7

X Y X XOR Y
X O Y

0 0 0
0 1 1
1 0 1
1 1 0

+

The output is “1” only if the inputs are opposite

Bitwise NOT

•Similar to logical NOT (!), except it works on a bit-
by-bit manner

• In C/C++, it’s denoted by a tilde: ~

~(1001) = 0110

1/13/20 Matni, CS64, Wi20 8

Exercises

•Remember: hexadecimal numbers are often written
in the 0xhh notation, so for example:

The hex 3B would be written as 0x3B

•What is ~(0x04)?
• Ans: 0xFB

•What is ~(0xE7)?
• Ans: 0x18

1/13/20 Matni, CS64, Wi20 9

Bitwise AND

•Similar to logical AND (&&), except it works on a bit-
by-bit manner

• In C/C++, it’s denoted by a single ampersand: &

(1001 & 0101) = 1 0 0 1
& 0 1 0 1

= 0 0 0 1

1/13/20 Matni, CS64, Wi20 10

Exercises

•What is (0xFF) & (0x56)?
• Ans: 0x56

•What is (0x0F) & (0x56)?
• Ans: 0x06

•What is (0x11) & (0x56)?
• Ans: 0x10

• Note how & can be used as a “masking” function
• Masking??! What’s being “masked”???

1/13/20 Matni, CS64, Wi20 11

Bitwise OR

• Similar to logical OR (||), except it works on a bit-by-bit
manner

• In C/C++, it’s denoted by a single pipe: |

(1001 | 0101) = 1 0 0 1
| 0 1 0 1

= 1 1 0 1

1/13/20 Matni, CS64, Wi20 12

Exercises

•What is (0xFF) | (0x92)?
• Ans: 0xFF

•What is (0xAA) | (0x55)?
• Ans: 0xFF

•What is (0xA5) | (0x92)?
• Ans: 0xB7

1/13/20 Matni, CS64, Wi20 13

Bitwise XOR

•Works on a bit-by-bit manner

• In C/C++, it’s denoted by a single carat: ^

(1001 ^ 0101) = 1 0 0 1
^ 0 1 0 1

= 1 1 0 0

1/13/20 Matni, CS64, Wi20 14

Exercises

•What is (0xA1) ^ (0x13)?
• Ans: 0xB2

•What is (0xFF) ^ (0x13)?
• Ans: 0xEC

•Note how (1^b) is always the inverse of b (~b)
and how (0^b) is always just b

1/13/20 Matni, CS64, Wi20 15

Bit Shift Left

•Move all the bits N positions to the left
•What do you do the positions now empty?
• You put in N number of 0s

•Example: Shift “1001” 2 positions to the left
1001 << 2 = 100100

•Why is this useful as a form of multiplication?

1/13/20 Matni, CS64, Wi20 16

Multiplication by Bit Left Shifting

•Veeeery useful in CPU (ALU) design
•Why?

•Because you don’t have to design a “multiplier”
function

•You just have to design a way for the bits to shift
(which is a relatively easier design)

1/13/20 Matni, CS64, Wi20 17

Bit Shift Right

•Move all the bits N positions to the right, subbing-in either N
number of 0s or N 1s on the left
• Takes on two different forms

• Example: Shift “1001” 2 positions to the right
1001 >> 2 = either 0010 or 1110

• The information carried in the last 2 bits is lost.
• If Shift Left does multiplication, what does Shift Right do?
• It divides, but it truncates the result

1/13/20 Matni, CS64, Wi20 18

Two Forms of Shift Right

• Subbing-in 0s makes sense (esp. if the number is unsigned)

• BUT! When should we sub-in the leftmost bits with 1s?
• ANS: When the number is signed and negative

• So what if it’s a signed number that’s positive?
• ANS: You should sub-in the leftmost bits with 0s!

• This is called “arithmetic” shift right:
1100 (arithmetic) >> 1 = 1110
0101 (arithmetic) >> 1 = 0010

1/13/20 Matni, CS64, Wi20 19

Two Forms of Shift Right

• If the number is unsigned (and thus always positive), we can use
“logical” shift right
• Never use this type of shift right on signed numbers…

• Arithmetic shift preserves sign bit

• Logical shift cannot/does not preserve sign bit

1/13/20 Matni, CS64, Wi20 20

Exercise Using Logic Ops

• Given an argument that’s a 32-bit integer number i, write a function
in C++ that can isolate the bit in position 5 of that integer and print it.

• Example: i = 1266

• In 32-bits of binary, that’s:
0000 0000 0000 0000 0000 0100 1111 0010

• So, the bit in position 5 is the highlighted one (it’s 1)

• So your code should print out “1”

• Answer:

1/13/20 Matni, CS64, Wi20 21

void print5(int i):
{

i >> 5;
i = i & 1;
cout << i;

}

1/13/20 Matni, CS64, Wi20 22

Introduction to
Assembly Language

Programming

The Simple Language of a CPU

• We have: variables, integers, floating points, arithmetic ops, and
assignment ops

• Restrictions:
• Can only assign integers directly to variables
• Can only do arithmetic on (e.g. add) variables, always two at a time (no more)

EXAMPLE:
z = 5 + 7; has to be simplified to:

x = 5;
y = 7;

z = x + y;

1/13/20 Matni, CS64, Wi20 23

What func is needed to
implement this?
ßßß

An adder: but how many bits?

Core Components

What we need in a CPU is:
• Some place to hold the statements (instructions to the CPU) as

we operate on them
• Some place to tell us which statement is next
• Some place to hold the variables
• Some way to do arithmetic on numbers

Processors just read a series of statements (instructions) forever.
No magic!

1/13/20 Matni, CS64, Wi20 24

Core Components

What we need in a CPU is:
• Some place to hold the statements (instructions to the CPU) as

we operate on them à
• Some place to tell us which statement is next à
• Some place to hold the variables à
• Some way to do arithmetic on numbers à

…And one more thing:
• Some place to tell us which statement is currently being

executed à

1/13/20 Matni, CS64, Wi20 25

Basic Interaction

• Copy instruction from memory at wherever the program counter
(PC) says into the instruction register (IR)

• Execute it, possibly involving registers and the arithmetic logic unit
(ALU)

• Update the PC to point
to the next instruction

• Repeat

1/13/20 Matni, CS64, Wi20 26

Initialize();

while (true) {

instruc_reg = GetFromMem[prog_countr];

executeInstruc(instruc_reg);

prog_countr++;

}

pseudocode

1/13/20 Matni, CS64, Wi20 27

1/13/20 Matni, CS64, Wi20 28

0

0: x = 5;
1: y = 7;
2: z = x + y;

x = 5; 5

1/13/20 Matni, CS64, Wi20 29

1

0: x = 5;
1: y = 7;
2: z = x + y;

y = 7; 5

0 + 1 = 1

x = 5;
7

1/13/20 Matni, CS64, Wi20 30

0: x = 5;
1: y = 7;
2: z = x + y;

y = 7; 5
7

2

1 + 1 = 2

z = x + y;

1/13/20 Matni, CS64, Wi20 31

0: x = 5;
1: y = 7;
2: z = x + y;

y = 7; 5
7

2

5 + 7 = 12

z = x + y;

12

Why MIPS?

•MIPS:
• a reduced instruction set computer (RISC) architecture

developed by a company called MIPS Technologies (1981)

• Relevant in embedded systems
• An area of CS/CE

•All modern commercial processors share the same core
concepts as MIPS, just with extra stuff
• Some modern CPUs include Intel, ARM, AMD

• ...but most importantly...

1/13/20 Matni, CS64, Wi20 32

MIPS is Simpler…

… than other instruction sets for CPUs

So it’s a great learning tool!

•Dozens of instructions (as opposed to hundreds)
• Lack of redundant instructions or special cases
•5 stage pipeline versus 12 stages (Intel i7 processors)

1/13/20 Matni, CS64, Wi20 33

YOUR TO-DOs

•Readings! Do Them!
• Consult syllabus…

•Finish Assignment #1
• You have to submit it as a PDF using Gradescope
• Due on Tuesday 1/14, by 11:59:59 PM

1/13/20 Matni, CS64, Wi20 34

1/13/20 Matni, CS64, Wi20 35

