
Binary Arithmetic
CS 64: Computer Organization and Design Logic

Lecture #2
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative Stuff

• The class is still full… L

• Did you check out the syllabus?
• Did you check out the class website?
• Did you check out Piazza (and get access to it)?
• Did you check out Gradescope (and get an account on it)?
• Do you understand how you will be submitting your

assignments?

1/9/20 Matni, CS64, Wi20 2

Lecture Outline

• Review of positional notation, binary logic
• Bitwise operations
• Bit shift operations
• Addition and subtraction in binary
• Two’s complement

1/9/20 Matni, CS64, Wi20 3

So Why Digital Design?

• Because that’s where the “magic” happens

• Logical decisions are made with 1s and 0s

• Physically (engineering-ly?), this comes from electrical
currents switching one way or the other & also how
semiconducting material work, etc…

• But we don’t have to worry about the physics part in this
class…

1/9/20 Matni, CS64, Wi20 4

Digital Design of a CPU (Showing Pipelining)

1/9/20 Matni, CS64, Wi20 5

Digital Design in this Course

• We will not go into “deep” dives with digital design in this
course

• For that, check out CS 154 (Computer Architecture)
and also courses in ECE

• We will, however, delve deep enough to understand the
fundamental workings of digital circuits and how they are
used for computing purposes.

1/9/20 Matni, CS64, Wi20 6

2
1/9/20 Matni, CS64, Wi20 7

Counting Numbers in Different Bases

• We “normally” count in 10s
• Base 10: decimal numbers
• We use 10 numerical symbols in Base 10: “0” thru “9”

• Computers count in 2s
• Base 2: binary numbers
• We use 2 numerical symbols in Base 2: “0” and “1”
• Represented with 1 bit (Note: 21 = 2)

1/9/20 Matni, CS64, Wi20 8

Counting Numbers in Different Bases

Other convenient bases in computer architecture:
• Base 8: octal numbers

• Number symbols are 0 thru 7
• Represented with 3 bits (23 = 8)

• Base 16: hexadecimal numbers
• Number symbols are 0 thru F:

including A = 10, B = 11, C = 12, D = 13, E = 14, F = 15
• Represented with 4 bits (24 = 16)

• Why are 4 bit representations convenient???

1/9/20 Matni, CS64, Wi20 9

What’s in a Number?

642

What is that???

Well, what NUMERICAL BASE are you expressing it in?

1/9/20 Matni, CS64, Wi20 10

Positional Notation

1/9/20 Matni, CS64, Wi20 11

642 in base 10 (decimal) can be described in
“positional notation” as:

6 x 100 = 600
4 x 10 = 40
2 x 1 = 2 = 642 in base 10

6 x 102 =
+ 4 x 101 =
+ 2 x 100 =

6 4 2
102 101 1

642 (base 10) = 600 + 40 + 2

Positional Notation

1/9/20 Matni, CS64, Wi20 12

642 in base 16 (hexadecimal) can be described in
“positional notation” as:

6 x 256 = 1536
4 x 16 = 64
2 x 1 = 2 = 1602 in base 16

6 x 162 =
+ 4 x 161 =
+ 2 x 160 =

6 4 2
162 161 1

Each digit gets multiplied by BN

Where:
B = the base
N = the position of the digit

Example: given the number 642 in base 8:

Number in decimal = 6 x 82 + 4 x 81 + 2 x 80

= 418

Positional Notation

1/9/20 Matni, CS64, Wi20 13

This is how you convert any base number into decimal!

Positional Notation in Binary

1/9/20 Matni, CS64, Wi20 14

11101 in base 2 positional notation is:

1 x 24 = 1 x 16 = 16
+ 1 x 23 = 1 x 8 = 8
+ 1 x 22 = 1 x 4 = 4
+ 0 x 21 = 1 x 2 = 0
+ 1 x 20 = 1 x 1 = 1

So, 11101 in base 2 is 16 + 8 + 4+ 0 + 1 = 29 in base 10

This is easy if you remember your powers of 2

Always Helpful to Know…
N 2N

1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024 = 1 kilobits

1/9/20 Matni, CS64, Wi20 15

N 2N

11 2048 = 2 kb
12 4 kb
13 8 kb
14 16 kb
15 32 kb
16 64 kb
17 128 kb
18 256 kb
19 512 kb
20 1024 kb = 1 megabits

N 2N

21 2 Mb
22 4 Mb
23 8 Mb
24 16 Mb
25 32 Mb
26 64 Mb
27 128 Mb
28 256 Mb
29 512 Mb
30 1 Gb

Another Convenient Table…

HEXADECIMAL BINARY

0 0000

1 0001

2 0010
3 0011

4 0100

5 0101
6 0110

7 0111

8 1000
9 1001

1/9/20 Matni, CS64, Wi20 16

HEXADECIMAL
(Decimal)

BINARY

A (10) 1010

B (11) 1011

C (12) 1100
D (13) 1101

E (14) 1110

F (15) 1111

Converting Binary to Octal and Hexadecimal
(or any base that’s a power of 2)

NOTE THE FOLLOWING:
• Binary is 1 bit per digit (0 or 1)
• Octal is 3 bits per digit (0, 1, 2, 3, 4, 5, 6 or 7)
• Hexadecimal is 4 bits per digit (0 thru F)

• Use the “group the bits” technique
• Always start from the least significant digit
• Group every 3 bits together for bin à oct
• Group every 4 bits together for bin à hex

1/9/20 Matni, CS64, Wi20 17

Converting Binary to Octal and Hexadecimal

• Take the example: 10100110
…to octal (group in 3s):

1 0 1 0 0 1 1 0

…to hexadecimal (group in 4s):
1 0 1 0 0 1 1 0

1/9/20 Matni, CS64, Wi20 18

2 4 6

10 6

246 in octal

A6 in hexadecimal

REMEMBER:
Start your grouping from the
Least Significant Bit (LSB)!!!

While (the quotient is not zero)
1. Divide the decimal number by the new base
2. Make the remainder the next digit to the left in the answer
3. Replace the original decimal number with the quotient
4. Repeat until your quotient is zero

Algorithm for converting number in base 10 to other bases

Converting Decimal to Other Bases

1/9/20 Matni, CS64, Wi20 19

Example: What is 98 (base 10) in base 8?

98 / 8 = 12 R 2

12 / 8 = 1 R 4

1 / 8 = 0 R 1

241

1/9/20 Matni, CS64, Wi20 20

Negative Numbers in Binary

• So we know that, for example, 6(10) = 110(2)

• But what about –6(10) ???

• What if we added one more bit on the far left to denote
“negative”?

• i.e. becomes the new MSB

• So: 110 (+6) becomes 1110 (–6)
• But this leaves a lot to be desired

• Bad design choice…

1/9/20 Matni, CS64, Wi20 21

Twos Complement Method

• This is how Twos Complement fixes this.
• Let’s write out -6(10) in 2s-Complement binary in 4 bits:

So, –6(10) = 1010(2) according to this rule

1/9/20 Matni, CS64, Wi20 22

0110
1001
1010

First take the unsigned (abs) value (i.e. 6)
and convert to binary:

Then negate it (i.e. do a “NOT” function on it):
Now add 1:

Let’s do it Backwards… By doing it
THE SAME EXACT WAY!

• 2s-Complement to Decimal method is the same!

• Take 1010 from our previous example
• Negate it and it becomes 0101
• Now add 1 to it & it becomes 0110, which is 6(10)

1/9/20 Matni, CS64, Wi20 23

Another View of 2s Complement

1/9/20 Matni, CS64, Wi20 24

NOTE:

In Two’s Complement,
if the number’s MSB
is “1”, then that means
it’s a negative number
and if it’s “0” then the
number is positive.

Another View of 2s Complement

1/9/20 Matni, CS64, Wi20 25

NOTE:
Opposite numbers show
up as symmetrically
opposite each other in
the circle.

NOTE AGAIN:
When we talk of 2s
complement, we must
also mention the
number of bits involved

Ranges

• The range represented by number
of bits differs between positive and negative binary
numbers

• Given N bits, the range represented is:
0 to

and

1/9/20 Matni, CS64, Wi20 26

+2N – 1 for positive numbers
–2N-1 to +2N-1 – 1
for 2’s Complement negative numbers

Addition

• We have an elementary notion of adding single digits, along
with an idea of carrying digits

• Example: when adding 3 to 9, we put forward 2 and carry the 1
(i.e. to mean 12)

• We can build on this notion to add numbers together that
are more than one digit long

• Example: 1 2 3
+ 3 8 9

1/9/20 Matni, CS64, Wi20 27

11

215

carried digits

Addition in Binary

• Same mathematical principal applies

0 0 1 1
+ 1 1 0 1

1/9/20 Matni, CS64, Wi20 28

1

00

11

00

3
+ 13

16

carry
carry

carry

1

1
carry

Q: What’s being assumed here???

A: That these are purely positive numbers

Theoretically, I can add any binary no.
with N1 digits to any other binary no.
with N2 digits.

BUT THERE IS A PRACTICAL LIMITATION!
Practically, a CPU must have a defined
no. of digits that it’s working with.

WHY???

Exercises

Implementing an 8-bit adder:

• What is (0x52) + (0x4B) ?
• Ans: 0x9D, output carry bit = 0

• What is (0xCA) + (0x67)?
• Ans: 0x31, output carry bit = 1

1/9/20 Matni, CS64, Wi20 29

Black Box Perspective of ANY
N-Bit Binary Adder

1/9/20 Matni, CS64, Wi20 30

N-bit
BINARY
ADDER

X
Y

Output Results Bits

Output Carry BitCIN

COUT

X + Y + CIN
Input Bits

Carry-in bit

N

N

N

This is a useful perspective for either writing
an N-bit adder function in code,

or for designing the actual digital circuit that does this!

Output Carry Bit Significance

• For unsigned (i.e. positive) numbers,
COUT = 1 means that the result did not fit into the number of
bits allotted

• Could be used as an error condition for software
• For example, you’ve designed a 16-bit adder and during some

calculation of positive numbers, your carry bit/flag goes to “1”.
Conclusion?

• Your result is
outside the maximum range allowed by 16 bits.

1/9/20 Matni, CS64, Wi20 31

Carry vs. Overflow

• The carry bit/flag works for – and is looked at –
only for unsigned (positive) numbers

• A similar bit/flag works is looked at for if signed
(two’s complement) numbers are used in the
addition: the overflow bit

1/9/20 Matni, CS64, Wi20 32

Overflow: for Negative Number Addition

• What about if I’m adding two negative numbers?
Like: 1001 + 1011?
• Then, I get: 0100 with the extra bit set at 1
• 1 0100 is the same as 16 + 8 = 24
• Sanity Check:

That’s adding (-7) + (-5), so I expected -12, NOT 24!!!
so what’s wrong here?

• The answer is that -12 is beyond the capability of 4 bits in
2’s complement!!!

1/9/20 Matni, CS64, Wi20 33

How Do We Determine
if Overflow Has Occurred?

• When adding 2 signed numbers: x + y = s

if x, y > 0 AND s < 0
OR if x, y < 0 AND s > 0

Then, overflow has occurred

1/9/20 Matni, CS64, Wi20 34

Example 1

Add: -39 and 92 in signed 8-bit binary

-39
92

53

There’s a carry-out (we don’t care)
But there is no overflow (V)
Note that V = 0, while Cout = 1 and Cin_signed_bit = 1

1/9/20 Matni, CS64, Wi20 35

Side-note:
What is the range of
signed numbers w/ 8 bits?

-27 to (27 – 1), or
-128 to 127

1101 1001
0101 1100

10011 0101
That’s 53 in signed 8-bits! Looks ok!

1
Cin_signed_bit

Cout

Example 2

Add: 104 and 45 in signed 8-bit binary

104
45

149

There’s no carry-out (again, we don’t care)

But there is overflow!
Given that this binary result is not 149, but actually –107 !

Note that V = 1, while Cout = 0 and Cin_signed_bit = 1

1/9/20 Matni, CS64, Wi20 36

0110 1000
0010 1101

1001 0101

That’s NOT 149 in signed 8-bits!

1
Cin_signed_bit

Cout = 0

V = Cout + Cin_signed_bit

YOUR TO-DOs

• Do your reading for next week’s classes
• Ch. 2.6

• Start on Assignment #1 for lab
• I’ll put it up on our main website this afternoon
• Meet up in the lab this Thursday
• Do the lab assignment: setting up CSIL + exercises
• You have to submit it as a PDF using Gradescope
• Due next week on Tuesday, 1/14, by 11:59:59 PM

1/9/20 Matni, CS64, Wi20 37

1/9/20 Matni, CS64, Wi20 38

