0($t0)
4(5t0)
$t3, $t4

8($t0)
$t0, 4
$t1, -1
loop

0x8d0b0000
0x8d0c0004
0x016c5020
0xad0a0008
0x21080004
0x2129ffff
0x1d20£f£f£f9

Welcome to

“Computer Organization and Desigm

=

RO = 2012
R1=10

<>
T GO

RO = R0 - R1
Ince R2 (Quotient)

—

Logic”

CS 64: Computer Organization and Design Logic
Lecture #1
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

A Word About Registration for CS64

FOR THOSE OF YOU NOT YET REGISTERED:
* This class is FULL and there is a WAITLIST

if (want2add) && (on_waitlist)
{
SeeMeAfterLecture(True);

else

YoureGonnaHaveABadTime(True);

1/7/20 }

Your Instructor

Your instructor: Ziad Matni, Ph.D. (zee-ahd mat-knee)

Email: zmatni@ucsb.edu

(please put CS64 at the start of the
subject header!!)

My office hours:

Mondays 10:00 AM - 11:30 AM, at SMSS 4409
(or by appointment)

1/7/20 Matni, CS64, Wi20

All labs will take place in PHELPS 3525
Your TAS All TA office hours will take place in Trailer 936

Teaching Assistant Office Hours

Kunlong Liu tbd
Michael Christensen tbd
Shu Yang (Reader) N/A (none)

Your FIRST lab is THIS THURSDAY! (posted on Wednesday)
Labs are due on TUESDAYS!

1/7/20 Matni, CS64, Wi20 5

YOUR LABS ARE HERE

§ Campbell) \
i Hall
M Robertson - ‘ =
: ©
| 8 STRICTED AREAJ
- RE
Q)

7, :lﬂ Cheadle Hall ®i O
B coral Tree Café 32 ——r
RESTRICTED AREA Science
YOUR LECTURES ARE HERE Hylif53"

out

C
|
El Centro l

Ellison Buchanan gh_ysical S
ciences)
Hall Hall Sk Sgl)e,n as

s ma B
RESTRICTED AREA . E .
2w = Broida Hall
Arbor E < |
o

RESTRICTED AT
ALL TIMES

RESTRICTED
AREA

- Bio-
Girvetz Hall Engineering

RESTRICTED

AT ALL TIMES
Matni, CS64, Wi20

Bren

1ces Counseling &
st Career Services

Science™&

You!

With a show of hands, tell me... how many of you...

Are Freshmen? Sophomores? Juniors? Seniors?

Are CS majors? Other?

Know: scripting language (PERL, csh, bash) programming?
Have NOT used a Linux or UNIX system before?

Have seen actual “assembly code” before?

Programmed in assembly before?

Written/seen code for firmware?

Understand basic binary logic (i.e. OR, AND, NOT)?
Designed any digital circuit before?

T IOmMMmMoOO WP

1/7/20 Matni, CS64, Wi20

This Class

* This is an introductory course in low-level programming and
computer hardware.
* Two separate but very intertwined areas

* What happens between your C/C++/Java/Python command:
inta=3,b=4,c=a+b;
and the actual “digital mechanisms” in the CPU
that process these “simple” (and other “no-so-simple”)
commands?

* This class can sometimes move fast — so please prepare
accordingly.

1/7/20 Matni, CS64, Wi20

Lecture Etiquette!

*| need you to be INVOLVED and ACTIVE!

* Phones OFF! and laptops/tablets are for NOTES only
* No social media use, please

* To succeed in this class, take thorough notes
* I'll provide my slides, but not class notes
 Studies show that written notes are superior to typed ones!

1/7/20 Matni, CS64, Wi20

Main Class Website

Main Website:
https://ucsb-cs64.github.io/w20/

On there, | will keep:
 Latest syllabus
 Class assignments
 Lecture slides (after I've given them)
* Exam prep material

* Important handouts and articles

1/7/20 Matni, CS64, Wi20

10

https://ucsb-cs64.github.io/f19/

Other Class Websites/Tools

Piazza

https://piazza.com/ucsb/winter2020/cs64

On there, we will:

* Engage in Q & A and online discussions Register
* Make important announcements Todav!
* Have (maybe) Interesting handouts and articles

Gradescope
https://www.gradescope.com
On there:
* You will submit all your assignments, typically as PDFs
* We will post your assignment grades
GauchoSpace

https://gauchospace.ucsb.edu
* This is where we will post your other grades

1/7/20 Matni, CS64, Wi20 11

https://piazza.com/ucsb/fall2019/cs64
https://www.gradescope.com/
https://gauchospace.ucsb.edu/

Just In Case...

WHAT DID WE WHAT'S YOUR WHEN ARE YOR) |
I COVER W CLASS = RY
VER 8 CLS LATE HOMEWO OFFICE HOURS?

IT'S IN TI-IE SYLLABUS

This message brought to you by every instructor that ever lived.
WWW.PHDCOMICS. COM

1/7/20 Matni, CS64, Wi20 12

So... let’s take a look at that syllabus...

Electronic version found on Main Website or at:
http://cs.ucsb.edu/~zmatni/syllabi/CS64W20 syllabus.pdf

* Instructor & T.A.s’ vital info

e Class websites’ info
You are responsible for
Textbook reading it

 Class organization and expected conduct (yes, the whole thing!)

e Grading info

* Lectures, quizzes & participation

e Labs & assignments

* My policies (absences, make ups, my copyrights, academic integrity)

e Class schedule

1/7/20 Matni, CS64, Wi20 13

http://cs.ucsb.edu/~zmatni/syllabi/CS64F19_syllabus.pdf

1/7/20

Matni, CS64, Wi20

14

A Simplified View of Modern Computer Architecture

The 5 Main Components of a Computer: a.k.a von Neumann Architecture

1. Processor
2. Memory
3. Input
4. Output Display screen
5. Secondary Data Storage Speakers
Printer
CPU RAM and ROM —-Or--

To a Program

w Processing “ Memory | EEJ= Output

for calculations, etc... for instructions, etc...
Keyboard

Mouse
Microphone
Scanner

__Or__

From a Program

Secondary Data Storage

HDD and SSD CD-ROM
Mini Flash Drive Tape Drive

1/7/20 15

Computer Memory

e Usually organized in two parts:
* Address: Where can | find my data?
e Data (payload): What is my data?

* The smallest representation of the data
* A binary bit (“0”s and “1”s)
A common collection of bits is a byte
* 8 bits = 1 byte
 What is a nibble?
* 4 bits = 1 nibble — not used as often...

 What is the minimum number of bits needed to convey an
alphanumeric character? And WHY?

1/7/20 Matni, CS64, Wi20

16

What is the Most Basic Form of Computer
Language?

* Binary a.k.a Base-2
* Expressing data AND instructions in either “1” or “0”
* So,
01010101 01000011 01010011 01000010 00100001 00100001
could mean a CPU instruction to “calculate 2 + 3”
Or it could mean an integer number (856,783,663,333)

Or it could mean a string of 6 ASCII characters (“UCSB!!”)

Or other things...!?!

1/7/20 Matni, CS64, Wi20 17

So... Like...
What Processes Stuff In A Computer?

* The Central Processing Unit (CPU)

* Executes program instructions

* Typical capabilities of CPU include:

e Add

* Subtract

* Multiply

* Divide

* Move data from location to location
You can do just about anything
with a computer with just these

simple instructions!

1/7/20 Matni, CS64, Wi20 18

Parts of the CPU

1_

r CPU
z Control [*
E Unit » Instructions
The CPU is made up of 2 main parts: SR w—
* The Arithmetic Logic Unit (ALU) " Registers]
and other related blocks, all together called the Datapath v |: S

—» Input Logic

» Output [—»

* The Control Unit (CU)

Main
Memory

* The ALU does the calculations in binary using “registers” (small RAM)

and logic circuits

* The CU handles breaking down instructions into control codes for the

ALU and memory

1/7/20 Matni, CS64, Wi20

Image from wikimedia.org

19

The CPU’s Fetch-Execute Cycle

* Fetch the next instruction

e Decode the instruction

* Get data if needed

e Execute the instruction

* Why is it a cycle???

This is what happens inside a
computer interacting with a
program at the “lowest” level

1/7/20 Matni, CS64, Wi20 20

Pipelining (Parallelism) in CPUs

* Pipelining is a fundamental design in CPUs

* Allows multiple instructions to go on at once

1/7/20

* a.k.a instruction-level parallelism

Basic five-stage pipeline

5 6 7
WB
MEM | WB
EX | MEM | WB
ID EX | MEM
IF ID EX

_ Clock

Inst;'\.\““:}\’\cIe ! 2 3

No.
1 IF ID | EX
2 IF ID
3 IF
4
5

MEM = Memory access, WB = Register write back).

(IF = Instruction Fetch, ID = Instruction Decode, EX = Execute,

21

Computer Languages and the F-E Cycle

* Instructions get executed in the CPU in machine
language (i.e. all in “1”s and “0”s)

* Even small instructions, like
“add 2 to 3 then multiply by 47,
need multiple cycles of the CPU to get fully executed

e But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second

1/7/20 Matni, CS64, Wi20 22

Computer Languages and the F-E Cycle

e But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second

* In low-level languages (like assembly or machine lang.) you need
to spell those parts of the cycles one at a time

* In high-level languages (like C, Python, Java, etc...) you don’t
* 1 HLL statement, like “x = c*(a + b)” is enough to get the job done
* This would translate into multiple statements in LLLs
* What translates HLL to LLL?

1/7/20 Matni, CS64, Wi20 23

Machine vs. Assembly Language

* Machine language (ML) is the actual 1s and Os

Example:

1011110111011100000101010101000

* Assembly language

* Instructions are given mnemonic codes but still displayed

one step at a time

is one step above ML

* Advantage? Better human readability

Example:
Iw $te, 4($sp)
add $to, $to, $te

1/7/20

High-level
language
program
(inC)

Assembly
language
program
(for MIPS)

fetch N from someplace in memory

add N to itself
and store the result in N

Matni, CS154, Wi20

Binary machine
language
program

(for MIPS)

swap(int v[], int k)

{int temp;
temp = v[k];
vik] = v[k+17;
v[lk+1] = temp;

}

swap:

muli $2, $5,4
add $2, $4,%2
Tw $15, 0($2)
Tw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

Assembler

00000000101000010000000000011000
00000000000110000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

24

Why Can Programs Sometimes be Slow?

e Easy answer: they’re processing a lot of stuff...

e But, isn’t just as “simple” as
1. getting an instruction,
2. finding the value in memory,
3. and doing stuff to it???

* Yes... except for the “simple” part...

* Ordering the instructions matters

Where in memory the value is matters

How instructions get “broken down” matters

What order these get “pipelined” matters

1/7/20 Matni, CS64, Wi20

25

The Point...

* If you really want performance, you need to know how the
“magic” works

* |f you want to write a naive compiler (CS 160), you need to
know some low-level details of how the CPU does stuff

* If you want to write a fast compiler, you need to know tons
of low-level details

1/7/20 Matni, CS64, Wi20 26

So Why Digital Design?

* Because that’s where the “magic” happens
* Logical decisions are made with 1s and Os

 Physically (engineering-ly?), this comes from electrical
currents switching one way or the other & also how
semiconducting material work, etc...

* But we don’t have to worry about the physics part in this
class...

1/7/20 Matni, CS64, Wi20

27

Digital Design of a CPU (Showing Pipelining)

am / W3W

Write Back

WB

XN

. Instruction Decode Execute
Instruction Fetch Register Fetch Address Calc. Memory Access
IF D EX MEM
Next PC
B Next SEQ PC Next SEQ PC
Q.
> RS1
—]
RS2 Branch
File
—
— — m
:' E N f 2 -
o o= =
PC o - =
_./
Sign |/mm N
A t Extend =z
—
>
l L~ |—‘
N W]

WB Data

Digital Design in this Course

* We will not go into “deep” dives with digital design in this
course

* For that, check out CS 154 (Computer Architecture)
and also courses in ECE

* We will, however, delve deep enough to understand the
fundamental workings of digital circuits and how they are
used for computing purposes.

1/7/20 Matni, CS64, Wi20 29

YOUR TO-DOs

e Get accounts on Piazza and Gradescope

* Do your reading for next class
* Check the syllabus

e Start on Assignment #1 for lab
* I'll put it up on our main website this Wednesday
* Meet up in the lab this Thursday
Do the lab assignment: setting up CSIL + exercises
You have to submit it as a PDF using Gradescope
Due on Tuesday, 1/14, by 11:59:59 PM

1/7/20 Matni, CS64, Wi20

30

1/7/20

</LECTURE>

Matni, CS64, Wi20

31

