
Welcome to
“Computer Organization and Design

Logic”
CS 64: Computer Organization and Design Logic

Lecture #1
Winter 2020

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

A Word About Registration for CS64

FOR THOSE OF YOU NOT YET REGISTERED:
• This class is FULL and there is a WAITLIST

1/7/20 Matni, CS154, Wi20 3

if (want2add) && (on_waitlist)

{

SeeMeAfterLecture(True);

}

else

{

YoureGonnaHaveABadTime(True);

}

Your Instructor

Your instructor: Ziad Matni, Ph.D. (zee-ahd mat-knee)

Email: zmatni@ucsb.edu

My office hours:
Mondays 10:00 AM – 11:30 AM, at SMSS 4409

(or by appointment)

1/7/20 Matni, CS64, Wi20 4

Your TAs

Teaching Assistant Office Hours

Kunlong Liu tbd
Michael Christensen tbd
Shu Yang (Reader) N/A (none)

Your FIRST lab is THIS THURSDAY! (posted on Wednesday)
Labs are due on TUESDAYS!

1/7/20 Matni, CS64, Wi20 5

All labs will take place in PHELPS 3525
All TA office hours will take place in Trailer 936

1/7/20 Matni, CS64, Wi20 6

YOUR LABS ARE HERE

YOUR LECTURES ARE HERE
PROF’S OFFICE IS HERE

You!

With a show of hands, tell me… how many of you…

A. Are Freshmen? Sophomores? Juniors? Seniors?
B. Are CS majors? Other?
C. Know: scripting language (PERL, csh, bash) programming?
D. Have NOT used a Linux or UNIX system before?
E. Have seen actual “assembly code” before?
F. Programmed in assembly before?
G. Written/seen code for firmware?
H. Understand basic binary logic (i.e. OR, AND, NOT)?
I. Designed any digital circuit before?

1/7/20 Matni, CS64, Wi20 7

This Class

• This is an introductory course in low-level programming and
computer hardware.

• Two separate but very intertwined areas

• What happens between your C/C++/Java/Python command:
int a = 3, b = 4, c = a+b;

and the actual “digital mechanisms” in the CPU
that process these “simple” (and other “no-so-simple”)
commands?

• This class can sometimes move fast – so please prepare
accordingly.

1/7/20 Matni, CS64, Wi20 8

Lecture Etiquette!

• I need you to be INVOLVED and ACTIVE!

• Phones OFF! and laptops/tablets are for NOTES only
• No social media use, please

• To succeed in this class, take thorough notes
• I’ll provide my slides, but not class notes
• Studies show that written notes are superior to typed ones!

1/7/20 Matni, CS64, Wi20 9

Main Class Website

Main Website:
https://ucsb-cs64.github.io/w20/

On there, I will keep:
• Latest syllabus

• Class assignments
• Lecture slides (after I’ve given them)

• Exam prep material
• Important handouts and articles

1/7/20 Matni, CS64, Wi20 10

https://ucsb-cs64.github.io/f19/

Register
Today!

Other Class Websites/Tools
Piazza

https://piazza.com/ucsb/winter2020/cs64
On there, we will:

• Engage in Q & A and online discussions
• Make important announcements

• Have (maybe) Interesting handouts and articles

Gradescope
https://www.gradescope.com

On there:
• You will submit all your assignments, typically as PDFs

• We will post your assignment grades

GauchoSpace
https://gauchospace.ucsb.edu

• This is where we will post your other grades

1/7/20 Matni, CS64, Wi20 11

https://piazza.com/ucsb/fall2019/cs64
https://www.gradescope.com/
https://gauchospace.ucsb.edu/

Just in Case…

1/7/20 Matni, CS64, Wi20 12

So… let’s take a look at that syllabus…

• Instructor & T.A.s’ vital info
• Class websites’ info
• Textbook
• Class organization and expected conduct
• Grading info
• Lectures, quizzes & participation
• Labs & assignments
• My policies (absences, make ups, my copyrights, academic integrity)
• Class schedule

1/7/20 Matni, CS64, Wi20 13

Electronic version found on Main Website or at:
http://cs.ucsb.edu/~zmatni/syllabi/CS64W20_syllabus.pdf

You are responsible for
reading it

(yes, the whole thing!)

http://cs.ucsb.edu/~zmatni/syllabi/CS64F19_syllabus.pdf

1/7/20 Matni, CS64, Wi20 14

Input Output

Secondary Data Storage

Keyboard
Mouse
Microphone
Scanner
--or--
From a Program

Display screen
Speakers
Printer
--or--
To a Program

A Simplified View of Modern Computer Architecture

HDD and SSD CD-ROM
Mini Flash Drive Tape Drive

CPU

Memory
for instructions, etc…

RAM and ROM

Processing
for calculations, etc…

a.k.a von Neumann Architecture

1/7/20 15

The 5 Main Components of a Computer:
1. Processor
2. Memory
3. Input
4. Output
5. Secondary Data Storage

Computer Memory

• Usually organized in two parts:
• Address: Where can I find my data?
• Data (payload): What is my data?

• The smallest representation of the data
• A binary bit (“0”s and “1”s)
• A common collection of bits is a byte

• 8 bits = 1 byte
• What is a nibble?

• 4 bits = 1 nibble – not used as often…
• What is the minimum number of bits needed to convey an

alphanumeric character? And WHY?

1/7/20 Matni, CS64, Wi20 16

What is the Most Basic Form of Computer
Language?

• Binary a.k.a Base-2

• Expressing data AND instructions in either “1” or “0”

• So,

01010101 01000011 01010011 01000010 00100001 00100001

could mean a CPU instruction to “calculate 2 + 3”

Or it could mean an integer number (856,783,663,333)

Or it could mean a string of 6 ASCII characters (“UCSB!!”)

Or other things…!?!

1/7/20 Matni, CS64, Wi20 17

So… Like…
What Processes Stuff In A Computer?

• The Central Processing Unit (CPU)
• Executes program instructions

• Typical capabilities of CPU include:
• Add
• Subtract
• Multiply
• Divide
• Move data from location to location

1/7/20 Matni, CS64, Wi20 18

You can do just about anything
with a computer with just these

simple instructions!

Parts of the CPU

The CPU is made up of 2 main parts:
• The Arithmetic Logic Unit (ALU)

and other related blocks, all together called the Datapath

• The Control Unit (CU)

• The ALU does the calculations in binary using “registers” (small RAM)
and logic circuits

• The CU handles breaking down instructions into control codes for the
ALU and memory

1/7/20 Matni, CS64, Wi20 19
Image from wikimedia.org

The CPU’s Fetch-Execute Cycle

• Fetch the next instruction

• Decode the instruction

• Get data if needed

• Execute the instruction

• Why is it a cycle???

1/7/20 Matni, CS64, Wi20 20

This is what happens inside a
computer interacting with a
program at the “lowest” level

Pipelining (Parallelism) in CPUs

1/7/20 21

• Pipelining is a fundamental design in CPUs
• Allows multiple instructions to go on at once

• a.k.a instruction-level parallelism

Computer Languages and the F-E Cycle

• Instructions get executed in the CPU in machine
language (i.e. all in “1”s and “0”s)

• Even small instructions, like
“add 2 to 3 then multiply by 4”,

need multiple cycles of the CPU to get fully executed

• But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second

1/7/20 Matni, CS64, Wi20 22

Computer Languages and the F-E Cycle

• But THAT’S OK! Because, typically,
CPUs can run many millions of instructions per second

• In low-level languages (like assembly or machine lang.) you need
to spell those parts of the cycles one at a time

• In high-level languages (like C, Python, Java, etc…) you don’t
• 1 HLL statement, like “x = c*(a + b)” is enough to get the job done
• This would translate into multiple statements in LLLs
• What translates HLL to LLL?

1/7/20 Matni, CS64, Wi20 23

Machine vs. Assembly Language

1/7/20 Matni, CS154, Wi20 24

• Machine language (ML) is the actual 1s and 0s

Example:

1011110111011100000101010101000

• Assembly language is one step above ML
• Instructions are given mnemonic codes but still displayed

one step at a time
• Advantage? Better human readability

Example:
lw $t0, 4($sp) # fetch N from someplace in memory

add $t0, $t0, $t0 # add N to itself
and store the result in N

Why Can Programs Sometimes be Slow?

• Easy answer: they’re processing a lot of stuff…

• But, isn’t just as “simple” as
1. getting an instruction,

2. finding the value in memory,
3. and doing stuff to it???

• Yes… except for the “simple” part…

• Ordering the instructions matters
Where in memory the value is matters

How instructions get “broken down” matters
What order these get “pipelined” matters

1/7/20 Matni, CS64, Wi20 25

The Point…

• If you really want performance, you need to know how the
“magic” works

• If you want to write a naive compiler (CS 160), you need to
know some low-level details of how the CPU does stuff

• If you want to write a fast compiler, you need to know tons
of low-level details

1/7/20 Matni, CS64, Wi20 26

So Why Digital Design?

• Because that’s where the “magic” happens

• Logical decisions are made with 1s and 0s

• Physically (engineering-ly?), this comes from electrical
currents switching one way or the other & also how
semiconducting material work, etc…

• But we don’t have to worry about the physics part in this
class…

1/7/20 Matni, CS64, Wi20 27

Digital Design of a CPU (Showing Pipelining)

1/7/20 Matni, CS64, Wi20 28

Digital Design in this Course

• We will not go into “deep” dives with digital design in this
course

• For that, check out CS 154 (Computer Architecture)
and also courses in ECE

• We will, however, delve deep enough to understand the
fundamental workings of digital circuits and how they are
used for computing purposes.

1/7/20 Matni, CS64, Wi20 29

YOUR TO-DOs

• Get accounts on Piazza and Gradescope

• Do your reading for next class
• Check the syllabus

• Start on Assignment #1 for lab
• I’ll put it up on our main website this Wednesday
• Meet up in the lab this Thursday
• Do the lab assignment: setting up CSIL + exercises
• You have to submit it as a PDF using Gradescope
• Due on Tuesday, 1/14, by 11:59:59 PM

1/7/20 Matni, CS64, Wi20 30

1/7/20 Matni, CS64, Wi20 31

