
Exercises	with		
Finite	State	Machines	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#17	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

Administrative	

•  Lab	#8	
– Due	next	week	on	Wednesday	
– Paper	copy	drop	off	at	HFH	2nd	floor	

3/7/19	 Matni,	CS64,	Wi19	 2	

Administrative	

•  The	Last	3	Weeks	of	CS	64:	

3/7/19	 Matni,	CS64,	Wi19	 3	

Date	 L	#	 Topic	 Lab	 Lab	Due	

2/26	 14	 Combinatorial	Logic,	
Sequential	Logic	1	 7	(CL+SL)	 Wed.	3/6	

2/28	 15	 Sequential	Logic	2	
3/5	 16	 FSM	1	

8	(FSM)	 Wed.	3/13	
3/7	 17	 FSM	2	
3/12	 18	 Digital	Logic	Review	

9	(Ethics)	 Fri.	3/15	
3/14	 19	 CS	Ethics	&	Impact	

Final	Exam	Review	

Designing	the	Circuit	for	the	FSM	

1.  We	start	with	a	T.T	

–  Also	called	a	“State	Transition	Table”	

2.  Make	K-Maps	and	simplify	

–  Usually	give	your	answer	as	a	“sum-of-products”	form	

3.  Design	the	circuit	
–  Have	to	use	D-FFs	to	represent	the	state	bits	

3/7/19	 Matni,	CS64,	Wi19	 4	

1.	The	Truth	Table		
(The	State	Transition	Table)	

3/7/19	 Matni,	CS64,	Wi19	 5	

State	 B2	 B1	 B0	 I	 B2*	 B1*	 B0*	 FOUND	

Initial	 0	 0	 0	 0	 0	 0	 0	 0	

1	 0	 0	 1	 0	

Found	“1”	 0	 0	 1	 0	 0	 0	 0	 0	

1	 0	 1	 0	 0	

Found	“11”	 0	 1	 0	 0	 0	 1	 1	 0	

1	 0	 1	 0	 0	

Found	“110”	 0	 1	 1	 0	 0	 0	 0	 0	

1	 1	 0	 0	 0	

Found	“1101”	 1	 0	 0	 0	 0	 0	 0	 1	

1	 0	 1	 0	 1	

CURRENT	STATE	 NEXT	STATE	INPUT(S)	 OUTPUT(S)	

Next	state:	
K-Maps!	

Outputs:	
Relate	to	
state	input	

bits	

3/7/19	 Matni,	CS64,	Wi19	 6	

3.	Design	the	
Circuit	

Note	that	CLK	is	the	input	to	ALL	
the	D-FFs’	clock	inputs.	This	is	a	
synchronous	machine.	
	
Note	the	use	of	labels	(example:	B2	
or	B0-bar)	instead	of	routing	wires	
all	over	the	place!	
	
Note	that	I	issued	both	Bn	and	Bn-
bar	from	all	the	D-FFs	–	it	makes	it	
easier	with	the	labeling	and	you	
won’t	have	to	use	NOT	gates!	
	
Note	that	the	sole	output	(FOUND)	
does	not	need	a	D-FF	because	it	is	
NOT	A	STATE	BIT!	

3/7/19	 Matni,	CS64,	Wi19	 7	

AND 	OR		DFF	

FPGAs	and	
Programmable	Logic	

Field-Programmable	Gate	Arrays	

The	“One	Hot”	Method	
•  Most	popularly	used	in	building	FSMs		
•  Give	each	state	it’s	own	D-FF	output	

–  #	of	FFs	needed			=			#	of	states	
–  You	end	up	using	MORE	D-FFs,	but	the	implementation	is	easier	to	

automate	

•  Inputs	to	the	D-FFs	are	combinatorial	logic	that	can	simplified	
into	a	“sum-of-products”	type	of	Boolean	expression	
–  No	need	to	go	through	T.T.s	and	K-Maps	

•  Current	CAD	software	can	do	this	automatically	
•  Implemented	with	FPGA	integrated	circuits	

3/7/19	 Matni,	CS64,	Wi19	 8	

Encoding	our	States	
Per	the	last	example	(“1101	Detector”):	We	had	5	separate	states,	so	
we’re	going	to	need	5	bits	(i.e.	5	DFFs)	to	describe	the	states:	
	
	NAME 	 	 						 						“Regular”	Code		“One	Hot”	Code 	OUTPUTS	
Initial	State	 	 	S0 	 	000	 	 	00001 		
“1”	 	 	 	 	S1 	 	001	 	 	00010	
“11” 	 	 	 	S2 	 	010	 	 	00100	
“110” 	 	 	 	S3 	 	011	 	 	01000	
“1101” 	 	 	 	S4 	 	100	 	 	10000 	 	 	FOUND	

•  Advantage	of	this	“One	Hot”	approach?	
–  When	we	implement	the	machine	with	circuits,	we	can	use	a	D-FF	for	

every	state	(so,	in	this	example,	we’d	use	5	of	them)	

3/7/19	 Matni,	CS64,	Wi19	 9	

Using	the	“One	Hot”	Code	to	
Determine	the	Circuit	Design	

•  Every	state	has	1	D-FF	
•  We	can	see	that	

(follow	the	arrows!!):	
	
S0*	=	S0.I	+	S1.I	+	S3.I	+	S4.I	
S1*	=	S0.I	
S2*	=	S1.I	+	S2.I	+	S4.I	
S3*	=	S2.I	
S4*	=	S3.I	
	
Also,	when	S4	is	True,	FOUND	is	True,						i.e.	FOUND	=	S4	
	
We	have	now	described	ALL	the	outputs	of	the	machine	as	
combinations	of	certain	inputs	WITHOUT	needing	to	do	T.T.	&	K-Maps!	

3/7/19	 Matni,	CS64,	Wi19	 10	

“1”	 “11”	

“110”	“1101”	

Initial	
State	

Input	=	0	 Input	=	1	

Input	=	1	

Input	=	0	
Input	=	0	

FOUND	=	1	

Input	=	1	

S0	

S4	 S3	

S2	S1	

3/7/19	 Matni,	CS64,	Wi19	 11	

Implementing	the	Circuit	For	“Detect	1101”	FSM	
Using	the	“One	Hot”	Method	

FSM	Exercise	1	
•  Given	a	FSM	described	with	the	following	state	diagram	

where:	
–  The	initial	state	is	S1	
–  There	is	only	1	input,	X	
–  There	is	only	1	output,	Y,	

and	it	is	initialized	to	0	

•  What	state	do	you	end	up	in	if	X	
takes	on	the	sequential	values	0110?	

•  Which	of	these	inputs	will	result	in	Y	=	1		
at	the	end	of	their	sequences?	
A.   0110	
B.   1111101	
C.   0101010	

3/7/19	 Matni,	CS64,	Wi19	 12	

X	=	 X	=	

X	=	
X	=	

1	

Y	=	1	

FSM	Exercise	1b	
•  How	many	bits	do	we	need	to	

represent	all	the	states	in	this	FSM?	
–  Using	regular,	non-alternative	methods	

•  Write	the	T.T.	for	this	FSM	

•  Write	the	next-state	functions	
for	this	FSM	

•  Design	the	digital	logic	circuit	to	
implement	this	FSM,	showing	all	inputs	
and	all	outputs	

3/7/19	 Matni,	CS64,	Wi19	 13	

X	=	 X	=	

X	=	
X	=	

1	

Y	=	1	

FSM	Exercise	2	
•  Design	a	FSM	that	takes	in	2	single-bit	binary	inputs,	A	and	B	and	always	is	

reset	to	(begins	in)	an	initial	state.	

•  The	machine	will	move	from	the	initial	state	only	if	A&&B	is	true.	Once	it	
does	that,	however,	it	will	go	through	N	states	sequentially,	once	for	every	
time	A||B	is	true.	

•  On	the	last	state,	it	simply	goes	to	the	initial	state	again	and	repeats.	

A.  Draw	the	state	diagram	for	N	=	3.	
B.   Using	the	“one-hot	method”,	how	many	bits	do	we	need	to	represent	all	

the	states	in	this	FSM?	
C.  Write	the	next-state	functions	for	this	FSM	using	the	approach	in	B.	
D.  Design	the	dig.	logic	circuit	to	implement	the	FSM	using	your	results	so	far	

3/7/19	 Matni,	CS64,	Wi19	 14	

FSM	Exercise	3	
•  Consider	the	FSM	circuit,	

shown	here	using	the	
“one-hot	method”	

A.  Identify	the	non-clock	
inputs	and	outputs	

B.  Write	the	next	state	
equations	

C.  Write	the	T.T.	for	this	
FSM	

D.  Draw	the	state	diagram	
for	this	FSM	

3/7/19	 Matni,	CS64,	Wi19	 15	

D 	Q	
	
		Clk 		

y1	

Clk	

D 	Q	
	
		Clk 		

y2	

Clk	

x	

OR	

YOUR	TO-DOs	

•  Lab	8	

3/7/19	 Matni,	CS64,	Wi19	 16	

3/7/19	 Matni,	CS64,	Wi19	 17	

