Exercises with Finite State Machines

CS 64: Computer Organization and Design Logic
Lecture \#17
Winter 2019
Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

- Lab \#8
- Due next week on Wednesday
- Paper copy drop off at HFH $2^{\text {nd }}$ floor

Administrative

- The Last 3 Weeks of CS 64:

Date	L \#	Topic	Lab	Lab Due
2/26	14	Combinatorial Logic, Sequential Logic 1	7 (CL+SL)	Wed. 3/6
2/28	15	Sequential Logic 2		
3/5	16	FSM 1	8 (FSM)	Wed. 3/13
3/7	17	FSM 2		
3/12	18	Digital Logic Review	9 (Ethics)	Fri. 3/15
3/14	19	CS Ethics \& Impact Final Exam Review		

Designing the Circuit for the FSM

1. We start with a T.T

- Also called a "State Transition Table"

2. Make K-Maps and simplify

- Usually give your answer as a "sum-of-products" form

3. Design the circuit

- Have to use D-FFs to represent the state bits

1. The Truth Table
 Next state:
 K-Maps!

 (The State Transition Table:| | CURRENT STATE | | | InPUT(S) | NEXT STATE | | | OUTPUT(S) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | B2 | B1 | B0 | 1 | B2* | B1* | B0* | FOUND |
| Initial | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | | | | 1 | 0 | 0 | 1 | 0 |
| Found "1" | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| | | | | 1 | 0 | 1 | 0 | 0 |
| Found "11" | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 |
| | | | | 1 | 0 | 1 | 0 | 0 |
| Found "110" | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| | | | | 1 | 1 | 0 | 0 | 0 |
| Found "1101" | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| | | | | 1 | 0 | 1 | 0 | 1 |

Outputs:
Relate to state input bits

3. Design the Circuit

Note that CLK is the input to ALL the D-FFs' clock inputs. This is a synchronous machine.

Note the use of labels (example: B2 or B0-bar) instead of routing wires all over the place!

Note that I issued both Bn and Bn bar from all the D-FFs - it makes it easier with the labeling and you won't have to use NOT gates!

Note that the sole output (FOUND) does not need a D-FF because it is NOT A STATE BIT!

FPGAs and Programmable Logic

Field-Programmable Gate Arrays

The "One Hot" Method

- Most popularly used in building FSMs
- Give each state it's own D-FF output
- \# of FFs needed = \# of states
- You end up using MORE D-FFs, but the implementation is easier to automate
- Inputs to the D-FFs are combinatorial logic that can simplified into a "sum-of-products" type of Boolean expression
- No need to go through T.T.s and K-Maps
- Current CAD software can do this automatically
- Implemented with FPGA integrated circuits

Encoding our States

Per the last example ("1101 Detector"): We had 5 separate states, so we're going to need 5 bits (i.e. 5 DFFs) to describe the states:

NAME	"Regular" Code "One Hot" Code OUTPUTS			
Initial State	SO	000	00001	
" 1 "	S1	001	00010	
" 11 "	S2	010	00100	
" 110 "	S3	011	01000	
" $1101 "$	S4	100	10000	FOUND

- Advantage of this "One Hot" approach?
- When we implement the machine with circuits, we can use a D-FF for every state (so, in this example, we'd use 5 of them)

Using the "One Hot" Code to Determine the Circuit Design

- Every state has 1 D-FF
- We can see that (follow the arrows!!):

$$
\begin{aligned}
& \text { S0* }=\text { S0.I }+ \text { S1.I }+ \text { S3.I }+ \text { S4.I } \\
& \text { S1 }^{*}=\text { S0.I } \\
& \text { S2 }^{*}=\text { S1.I }+ \text { S } 2.1+\text { S4.I } \\
& \text { S3 }^{*}=\text { S2.I } \\
& \text { S4 }^{*}=\text { S3.1 }
\end{aligned}
$$

Also, when S4 is True, FOUND is True, i.e. FOUND = S4

We have now described ALL the outputs of the machine as combinations of certain inputs WITHOUT needing to do T.T. \& K-Maps!

Implementing the Circuit For "Detect 1101" FSM Using the "One Hot" Method

FSM Exercise 1

- Given a FSM described with the following state diagram where:
- The initial state is S1
- There is only 1 input, X
- There is only 1 output, Y, and it is initialized to 0
- What state do you end up in if X takes on the sequential values 0110 ?
- Which of these inputs will result in $Y=1$
 at the end of their sequences?
A. 0110
B. 1111101
C. 0101010

FSM Exercise 1b

- How many bits do we need to represent all the states in this FSM?
- Using regular, non-alternative methods
- Write the T.T. for this FSM
- Write the next-state functions for this FSM

- Design the digital logic circuit to implement this FSM, showing all inputs and all outputs

FSM Exercise 2

- Design a FSM that takes in 2 single-bit binary inputs, A and B and always is reset to (begins in) an initial state.
- The machine will move from the initial state only if $\mathbf{A} \& \& B$ is true. Once it does that, however, it will go through N states sequentially, once for every time $\mathbf{A}|\mid B$ is true.
- On the last state, it simply goes to the initial state again and repeats.
A. Draw the state diagram for $\mathrm{N}=3$.
B. Using the "one-hot method", how many bits do we need to represent all the states in this FSM?
C. Write the next-state functions for this FSM using the approach in B.
D. Design the dig. logic circuit to implement the FSM using your results so far

FSM Exercise 3

- Consider the FSM circuit, shown here using the "one-hot method"
A. Identify the non-clock inputs and outputs
B. Write the next state equations
C. Write the T.T. for this FSM

D. Draw the state diagram for this FSM

YOUR TO-DOs

- Lab 8

