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Administrative	

•  Lab	#8	
– On	Thursday	
– Due	next	week	on	Wednesday	
– Paper	copy	
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Administrative	

•  The	Last	3	Weeks	of	CS	64:	
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Date	 L	#	 Topic	 Lab	 Lab	Due	

2/26	 14	 Combinatorial	Logic,	
Sequential	Logic	1	 7	(CL+SL)	 Wed.	3/6	

2/28	 15	 Sequential	Logic	2	
3/5	 16	 FSM	1	

8	(FSM)	 Wed.	3/13	
3/7	 17	 FSM	2	
3/12	 18	 Digital	Logic	Review	

9	(Ethics)	 Fri.	3/15	
3/14	 19	 CS	Ethics	&	Impact	

Final	Exam	Review	



Lecture	Outline	

•  Finite	State	Machines	

– Moore	vs.	Mealy	types	

– State	Diagrams	

– Figuring	out	a	circuit	for	a	FSM	
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If	a	combinational	logic	circuit	is	an	
implementation	of	a	Boolean	function,	

	
then	a	sequential	logic	circuit	can	be	
considered	an	implementation	of		

a	finite	state	machine.	



Finite	State	Machines	(FSM)	

•  A	State	=	An	output	or	collection	of	outputs	of	a	digital	
“machine”	

•  A	Machine	=	A	computational	entity	that	predictably	works	
based	on	one	or	more	input	conditions	and	yields	a	logical	
output	

•  A	Finite	State	Machine:	An	abstract	machine	that	can	be	in	
exactly	one	of	a	finite	number	of	states	at	any	given	time	
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Finite	State	Machines	(FSM)	
•  The	FSM	can	change	from	one	state	to	another	in	response	to	some	

external	inputs	

•  The	change	from	one	state	to	another	is	called	a	transition.		

•  An	FSM	is	defined	by	a	list	of	its	states,	its	initial	state,		
	 	 	 	 	 	and	the	conditions	for	each	transition.	
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STATE	
“A”	

Starting	point	
STATE	
“B”	

Transition	A->B	

Transition	B->A	



Example	of	a	Simple	FSM:	
The	Turnstile	

	 	 					initial	state	
State	Transition	Table	
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Current	
State	

Input	 Next		
State	

Output	

Locked	 Coin	 Unlocked	 Unlocks	the	turnstile	so	that	the	customer	can	push	through.	

Locked	 Push	 Locked	 Nothing	–	you’re	locked!	J	

Unlocked	 Coin	 Unlocked	 Nothing	–	you	just	wasted	a	coin!	J	

Unlocked	 Push	 Locked	 When	the	customer	has	pushed	through,	locks	the	turnstile.	



Example	of	a	Simple	FSM:	
The	Turnstile	

	 	 					initial	state	
State	Transition	Table	
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Current	
State	

Input	 Next		
State	

Output	

Locked	 Coin	 Unlocked	 Unlocks	the	turnstile	so	that	the	customer	can	push	through.	

Locked	 Push	 Locked	 Nothing	–	you’re	locked!	J	

Unlocked	 Coin	 Unlocked	 Nothing	–	you	just	wasted	a	coin!	J	

Unlocked	 Push	 Locked	 When	the	customer	has	pushed	through,	locks	the	turnstile.	

This	is	called	a	
state	diagram	

		 											à	



General	Form	of	FSMs	
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Example	
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A	
	

CLK	

Q*	

Q*	=	QO.A	
(read	as:	the	next-state	of	Q	will	be	QO.A)	

i.e.	On	the	next	rising	edge	of	the	clock,	the	output	of	
the	D-FF	(Q*)	will	become		

the	previous	value	of	Q	(QO)	AND	the	value	of	input	A	

Qo	Combinatorial	logic	

State	register	Clock	signal	

Output-to-input	feedback	



FSM	Types	

There	are	2	types/models	of	FSMs:	
•  Moore	machine	
–  Output	is	function	of	present	state	only	

•  Mealy	machine	
–  Output	is	function	of	present	state	and	present	input	
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Moore	Machine	
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Output	is	function	of	present	state	only	



Example	of	a	Moore	Machine	
(with	1	state)	
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A	
	

CLK	

Z	

Z	=	(Q*	+	B)	=	(QO.A	+	B)	
On	the	next	rising	edge	of	the	clock,	the	output	of	the	entire	circuit	(Z)	

will	become		
(the	previous	value	of	Q	(QO)	AND	the	value	of	input	A)	NOR	B	

	
NOTE:				CLK	is	NOWHERE	IN	THE	EQUATION!!!	

B	

Q	

Output	is	function	of	present	state	only	



Mealy	Machine	

3/5/19	 Matni,	CS64,	Wi19	 16	

Output	is	function	of	present	state	and	present	input	

Makes	the	difference	w/	Moore	Machines	



Example	of	a	Mealy	Machine	
(with	1	state)	
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A	
	

CLK	
	
B	

Z	

Z	=	(Q*	+	A	+	B)	=	(QO	XOR	A)	+	(A	+	B)	

On	the	next	rising	edge	of	the	clock,	the	output	of	the	entire	
circuit	(Z)	will	become	…etc…	

Q	

Output	is	function	of	present	state	and	present	input	



Example	of	a	Moore	Machine	

WASHER_DRYER	

•  Let’s	“build”	a	sequential	logic	FSM	that	acts	as	a	controller	
to	a	simplistic	washer/dryer	machine	

•  This	machine	takes	in	various	inputs	in	its	operation	(we’ll	
only	focus	on	the	following	sensor-based	ones):	

•  This	machine	also	issues	1	output	while	running:	
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Coin	is	in	(vs	it	isn’t	in)		
Soap	is	present	(vs	it’s	used	up)	 		
Clothes	are	still	wet	(vs	clothes	are	dry)	

“Done”	indicator	



Machine	Design	

•  We	want	this	machine	to	have	4	distinct	states	that	
we	go	from	one	to	the	next	in	this	sequence:	

1.   Initial	State	
–  Where	we	are	when	we	are	waiting	to	start	the	wash	

2.   Wash	
–  Where	we	wash	with	soap	and	water	

3.   Dry	
–  Where	we	dry	the	clothes	

4.   Done	
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Combining	the	Inputs	

•  Let’s	create	a	variable	called	GTNS	(i.e.	Go	To	Next	State)	

•  GTNS	is	1	if	any	of	the	following	is	true:	
–  Coin	is	in	
–  Soap	is	no	longer	detected	
–  Clothes	are	now	dry	
–  I	assume	that	these	3	inputs	to	be	mutually	exclusive	
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Coin	is	in	(vs	it	isn’t	in)		
Soap	is	no	longer	detected	(vs	it’s	still	there)	 		
Clothes	are	now	dry	(vs	clothes	are	still	wet)	



What’s	Going	to	
Happen? 	 	1/2	

•  We	start	at	an	“Initial”	state	whenever	we	start	up	the	machine	
–  Let’s	also	assume	this	stage	is	when	you’d	put	in	the	soap	and	clothes	
–  Once	input	“Coin	is	in”	is	1,	GTNS	is	now	1	
–  This	event	triggers	leaving	the	current	state	to	go	to	the	next	state	

•  This	is	followed	by	the	next	state,	“Wash”	
–  “Coin	inserted”	is	now	0	at	this	point	(so	GTNS	goes	back	to	0)	
–  While	soap	is	still	present,	GTNS	goes	back	to	0	
–  When	the	input	“Soap	is	no	longer	present”	goes	to	1,	GTNS	goes	to	1	
–  This	event	triggers	leaving	the	current	state	to	go	to	the	next	state	
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Coin	is	in	(vs	it	isn’t	in)		
Soap	is	no	longer	detected	(vs	it’s	still	there)		
Clothes	are	now	dry	(vs	clothes	are	still	wet)	



•  This	is	followed	by	the	next	state,	“Dry”	
–  This	new	state	sets	an	output	that	triggers	a	timer	
–  The	input	“Soap	is	no	longer	present”	goes	to	0,	so	GTNS	is	0	also	
–  While	the	input	“Clothes	are	now	dry”	is	0	,	GTNS	remains	at	0	too	
–  When	the	input	“Clothes	are	now	dry”	is	1,	GTNS	changes	to	1	
–  This	event	triggers	leaving	the	current	state	to	go	to	the	next	state	

•  This	is	followed	by	the	next	and	last	state,	“Done”	
–  When	you’re	here,	you	go	back	to	the	“initial”	state	
–  No	inputs	to	consider:	you	do	move	this	regardless	
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What’s	Going	to	
Happen? 	 	2/2	

Coin	is	in	(vs	it	isn’t	in)		
Soap	is	no	longer	detected	(vs	it’s	still	there)		
Clothes	are	now	dry	(vs	clothes	are	still	wet)	
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State	Diagram	for	
Washer-Dryer	Machine	

Wash	

Done	

Initial	
State	

GTNS	

DONE	=	1	

DONE	=	0	

inputs	

outputs	
state	

transition	

GTNS	

GTNS	

1	

Dry	

GTNS	

GTNS	=	COIN_IN	+	NO_SOAP	+	CLTHS_DRY	



Unconditional	Transitions	

•  Sometimes	the	transition	is	unconditional	
–  Does	not	depend	on	any	input	–	it	just	happens	

•  We	then	diagram	this	as	a	“1”	(for	“always	does	this”)	
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State	2	State	0	
K	=	1	

State	1	

K	=	0	
1	

K	=	0	K	=	1	



Representing	The	States	
•  How	many	bits	do	I	need	to	represent	all	the	states	in	this	Washer-Dryer	

Machine?	

•  There	are	4	unique	states	(including	“init”)	
–  So,	2	bits	

•  If	my	state	machine	will	be	built	using	a	memory		
circuit	(most	likely,	a	D-FF),	how	many	of	these		
should	I	have?	
–  2	bits	=	2	D-FFs	

•  There	is	another	scheme	to	do	this	called	“One	Hot	Method”.		
–  More	on	this	later…	
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State	 S1	 S0	
Initial	 0	 0	
Wash	 0	 1	
Rinse	 1	 0	
Dry	 1	 1	



Example	of	a	Moore	Machine	2	
DETECT_1101	

•  Let’s	build	a	sequential	logic	FSM	that	always	detects	a	specific	
serial	sequence	of	bits:	1101	

	
•  We’ll	start	at	an	“Initial”	state	(S0)	
•  We’ll	first	look	for	a	1.	We’ll	call	that	“State	1”	(S1)	

–  Don’t	go	to	S1	if	all	we	find	is	a	0!	

•  We’ll	then	keep	looking	for	another	1.	We’ll	call	that		
“State	11”	(S2)	
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Example	of	a	Moore	Machine	2	
DETECT_1101	

•  Then…	a	0.	We’ll	call	that	“State	110”	(S3)	

•  Then	another	1.	
We’ll	call	that	“State	1101”(S4)	–	this	will	also	output	a	FOUND	signal	

•  We	will	always	be	detecting	“1101”	(it	doesn’t	end)	
	So,	as	SOON	as	S4	is	done,	we	keep	looking	for	1s	or	0s	

•  Example:		if	the	input	stream	is		111101110101101000011111011011	
	 	 	we	detect	“1101”	at 													ñ		ñ				ñ									ñ ñ	
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111101110101101000011111011011	



State	Diagram	2	
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“1”	 “11”	

“110”	“1101”	

Initial	
State	

Input	=	0	 Input	=	1	

Input	=	1	

Input	=	0	

Input	=	0	

FOUND	=	1	

Input	=	1	

S0	

S4	 S3	

S2	S1	



Representing	The	States	
•  How	many	bits	do	I	need	to	represent	all	the	states	in	this	

“Detect	1101”	Machine?	

•  There	are	5	unique	states		
(including	“init”)	
–  So,	3	bits	

•  How	many	D-FFs	should	I	have	
to	build	this	machine?	
–  3	bits	=	3	D-FFs	
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State	 B2	 B1	 B0	

Initial	 0	 0	 0	
Found	“1”	 0	 0	 1	
Found	“11”	 0	 1	 0	
Found	“110”	 0	 1	 1	
Found	“1101”	 1	 0	 0	



Designing	the	Circuit	for	the	FSM	

1.  We	start	with	a	T.T	

–  Also	called	a	“State	Transition	Table”	

2.  Make	K-Maps	and	simplify	

–  Usually	give	your	answer	as	a	“sum-of-products”	form	

3.  Design	the	circuit	
–  Have	to	use	D-FFs	to	represent	the	state	bits	
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1.	The	Truth	Table		
(The	State	Transition	Table)	
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State	 B2	 B1	 B0	 I	 B2*	 B1*	 B0*	 FOUND	

Initial	 0	 0	 0	 0	 0	 0	 0	 0	

1	 0	 0	 1	 0	

Found	“1”	 0	 0	 1	 0	 0	 0	 0	 0	

1	 0	 1	 0	 0	

Found	“11”	 0	 1	 0	 0	 0	 1	 1	 0	

1	 0	 1	 0	 0	

Found	“110”	 0	 1	 1	 0	 0	 0	 0	 0	

1	 1	 0	 0	 0	

Found	“1101”	 1	 0	 0	 0	 0	 0	 0	 1	

1	 0	 1	 0	 1	

CURRENT	STATE	 NEXT	STATE	INPUT(S)	 OUTPUT(S)	



2.	K-Maps	for	B2*	and	B1*	

•  B2*	=	!B2.B1.B0.I	
– No	further	simplification		

•  B1*	 	=	!B2.!B1.B0.I	
	 	 	+	B2.!B1.!B0.I	
	 	 	+	!B2.B1.!B0	
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B2.B1	
B0.I	

00	 01	 11	 10	

00	

01	

11	 1	

10	

B2.B1	
B0.I	

00	 01	 11	 10	

00	 1	

01	 1	 1	

11	 1	

10	

B2*	

B1*	

You	need	to	
do	this	for	all	
state	outputs	



2.	K-Map	for	B0*	
Output	FOUND	

•  B0*		=	!B2.!B1.!B0.I	
	 	 	+	!B2.B1.!B0.!I	

•  FOUND 	=	B2.!B1.!B0	
–  Note	that	FOUND	does	not	need	
a	K-Map.	It	is	always	“1”	(i.e.	True)	when	we	are	in	state	S4	
(i.e.	when	B2=1,	B1=0,	B0=0)	
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B2.B1	
B0.I	

00	 01	 11	 10	

00	 1	

01	 1	

11	

10	

B0*	
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3.	Design	the	
Circuit	

Note	that	CLK	is	the	input	to	ALL	
the	D-FFs’	clock	inputs.	This	is	a	
synchronous	machine.	
	
Note	the	use	of	labels	(example:	B2	
or	B0-bar)	instead	of	routing	wires	
all	over	the	place!	
	
Note	that	I	issued	both	Bn	and	Bn-
bar	from	all	the	D-FFs	–	it	makes	it	
easier	with	the	labeling	and	you	
won’t	have	to	use	NOT	gates!	
	
Note	that	the	sole	output	(FOUND)	
does	not	need	a	D-FF	because	it	is	
NOT	A	STATE	BIT!	



YOUR	TO-DOs	

•  Lab	8	
– Start	on	Thursday	
– Due	back	on	Wednesday	(last	week	of	
classes)	
– Paper	copy	–	not	electronic	
– Drop	off	in	the	CS64	BOX	in	HFH	2nd	Floor	
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