Introduction to Finite State Machines

CS 64: Computer Organization and Design Logic
Lecture \#16
Winter 2019
Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

THIS IS WHAT LEARNING LOGIC GATES FEELS LIKE

SEE, YOU JUST CONNECT THIS 12 INPUT REVERSE FLIP-FLOP TO THE CONTROLLED TWO-THIRDS ADDER, WHICH RESETS THE LATCHES IN THE NOT-NAND RELAY ARRAY, THEN LOOP BACK TO ODD-NUMBER INPUTS AND REVERSE ALL YOUR SWITCHES!

Administrative

- Lab \#8
- On Thursday
- Due next week on Wednesday
- Paper copy

Administrative

- The Last 3 Weeks of CS 64:

Date	L\#	Topic	Lab	Lab Due
2/26	14	Combinatorial Logic, Sequential Logic 1	7 (CL+SL)	Wed. 3/6
2/28	15	Sequential Logic 2		
3/5	16	FSM 1	8 (FSM)	Wed. 3/13
3/7	17	FSM 2		
3/12	18	Digital Logic Review	9 (Ethics)	Fri. 3/15
3/14	19	CS Ethics \& Impact Final Exam Review		

Lecture Outline

- Finite State Machines
- Moore vs. Mealy types
- State Diagrams
- Figuring out a circuit for a FSM

If a combinational logic circuit is an implementation of a Boolean function,
then a sequential logic circuit can be considered an implementation of a finite state machine.

Finite State Machines (FSM)

- A State = An output or collection of outputs of a digital "machine"
- A Machine = A computational entity that predictably works based on one or more input conditions and yields a logical output
- A Finite State Machine: An abstract machine that can be in exactly one of a finite number of states at any given time

Finite State Machines (FSM)

- The FSM can change from one state to another in response to some external inputs
- The change from one state to another is called a transition.

- An FSM is defined by a list of its states, its initial state, and the conditions for each transition.

Example of a Simple FSM:

 The Turnstile
initial state

State Transition Table

Current State	Input	Next State	Output
Locked	Coin	Unlocked	Unlocks the turnstile so that the customer can push through.

Example of a Simple FSM:

 The TurnstileThis is called a state diagram

initial state

State Transition Table

Current State	Input	Next State	Output
Locked	Coin	Unlocked	Unlocks the turnstile so that the customer can push through.
Locked	Push	Locked	Nothing - you're locked! :)
Unlocked	Coin	Unlocked	Nothing - you just wasted a coin! :)
Unlocked	Push	Locked	When the customer has pushed through, locks the turnstile.

General Form of FSMs

Example

Output-to-input feedback

$$
\mathbf{Q}^{*}=\mathrm{Q}_{0} \cdot \mathrm{~A}
$$

(read as: the next-state of \mathbf{Q} will be $\mathrm{Q}_{0} . \mathrm{A}$)
i.e. On the next rising edge of the clock, the output of the $\mathrm{D}-\mathrm{FF}\left(\mathrm{Q}^{*}\right)$ will become the previous value of $Q\left(Q_{0}\right)$ AND the value of input A

FSM Types

There are $\mathbf{2}$ types/models of FSMs:

- Moore machine
- Output is function of present state only
- Mealy machine
- Output is function of present state and present input

Moore Machine

Output is function of present state only

Example of a Moore Machine (with 1 state)

Output is function of present state only

$$
Z=\left(Q^{*}+B\right)=\left(Q_{0} \cdot A+B\right)
$$

On the next rising edge of the clock, the output of the entire circuit (Z) will become
(the previous value of $Q\left(Q_{0}\right)$ AND the value of input A) NOR B

NOTE: CLK is NOWHERE IN THE EQUATION!!!

Mealy Machine

Output is function of present state and present input

Example of a Mealy Machine (with 1 state)

Output is function of present state and present input

On the next rising edge of the clock, the output of the entire circuit (Z) will become ...etc...

Example of a Moore Machine

WASHER_DRYER

- Let's "build" a sequential logic FSM that acts as a controller to a simplistic washer/dryer machine
- This machine takes in various inputs in its operation (we'll only focus on the following sensor-based ones):

```
Coin is in (vs it isn't in)
Soap is present (vs it's used up)
Clothes are still wet (vs clothes are dry)
```

- This machine also issues 1 output while running:
"Done" indicator

Machine Design

- We want this machine to have 4 distinct states that we go from one to the next in this sequence:

1. Initial State

- Where we are when we are waiting to start the wash

2. Wash

- Where we wash with soap and water

3. Dry

- Where we dry the clothes

4. Done

Combining the Inputs

Coin is in (vs it isn't in)
Soap is no longer detected (vs it's still there)
Clothes are now dry (vs clothes are still wet)

- Let's create a variable called GTNS (i.e. Go To Next State)
- GTNS is 1 if any of the following is true:
- Coin is in
- Soap is no longer detected
- Clothes are now dry
- I assume that these 3 inputs to be mutually exclusive

What's Going to Happen? 1/2

- We start at an "Initial" state whenever we start up the machine
- Let's also assume this stage is when you'd put in the soap and clothes
- Once input "Coin is in" is 1, GTNS is now 1
- This event triggers leaving the current state to go to the next state
- This is followed by the next state, "Wash"
- "Coin inserted" is now 0 at this point (so GTNS goes back to 0)
- While soap is still present, GTNS goes back to 0
- When the input "Soap is no longer present" goes to 1 , GTNS goes to 1
- This event triggers leaving the current state to go to the next state

What's Going to Happen? 2/2

- This is followed by the next state, "Dry"
- This new state sets an output that triggers a timer
- The input "Soap is no longer present" goes to 0 , so GTNS is 0 also
- While the input "Clothes are now dry" is 0 , GTNS remains at 0 too
- When the input "Clothes are now dry" is 1, GTNS changes to 1
- This event triggers leaving the current state to go to the next state
- This is followed by the next and last state, "Done"
- When you're here, you go back to the "initial" state
- No inputs to consider: you do move this regardless

State Diagram for Washer-Dryer Machine

```
GTNS = COIN_IN + NO_SOAP + CLTHS_DRY
```


Unconditional Transitions

- Sometimes the transition is unconditional
- Does not depend on any input - it just happens
- We then diagram this as a " 1 " (for "always does this")

Representing The States

- How many bits do I need to represent all the states in this Washer-Dryer Machine?
- There are 4 unique states (including "init")
- So, 2 bits
- If my state machine will be built using a memory circuit (most likely, a D-FF), how many of these should I have?

State	S1	s0
Initial	0	0
Wash	0	1
Rinse	1	0
Dry	1	1

- 2 bits $=2$ D-FFs
- There is another scheme to do this called "One Hot Method".
- More on this later...

Example of a Moore Machine 2

DETECT_1101

- Let's build a sequential logic FSM that always detects a specific serial sequence of bits: 1101
- We'll start at an "Initial" state (SO)
- We'll first look for a 1. We'll call that "State 1" (S1)
- Don't go to S 1 if all we find is a $\mathbf{0}$!
- We'll then keep looking for another 1 . We'll call that "State 11" (S2)

Example of a Moore Machine 2

DETECT_1101

- Then... a 0. We'll call that "State 110" (S3)
- Then another 1. We'll call that "State 1101 " $(S 4)$ - this will also output a FOUND signal
- We will always be detecting "1101" (it doesn't end) So, as SOON as S4 is done, we keep looking for 1 s or 0 s
- Example: if the input stream is 111101110101101000011111011011 we detect "1101" at $\hat{\text { t }}$ 仑े $\hat{\text { t }}$

State Diagram 2

Representing The States

- How many bits do I need to represent all the states in this "Detect 1101" Machine?
- There are 5 unique states (including "init")
- So, 3 bits
- How many D-FFs should I have to build this machine?

State	B2	B1	B0
Initial	0	0	0
Found " 1 "	0	0	1
Found "11"	0	1	0
Found "110"	0	1	1
Found "1101"	1	0	0

-3 bits $=3$ D-FFs

Designing the Circuit for the FSM

1. We start with a T.T

- Also called a "State Transition Table"

2. Make K-Maps and simplify

- Usually give your answer as a "sum-of-products" form

3. Design the circuit

- Have to use D-FFs to represent the state bits

1. The Truth Table (The State Transition Table)

	CURRENT STATE			InPUT(S)	NEXT STATE			OUTPUT(S)
State	B2	B1	B0	I	B2*	B1*	B0*	FOUND
Initial	0	0	0	0	0	0	0	0
				1	0	0	1	0
Found "1"	0	0	1	0	0	0	0	0
				1	0	1	0	0
Found "11"	0	1	0	0	0	1	1	0
				1	0	1	0	0
Found "110"	0	1	1	0	0	0	0	0
				1	1	0	0	0
Found "1101"	1	0	0	0	0	0	0	1
				1	0	1	0	1

2. K-Maps for B2* and B1*

2. K-Map for BO* Output FOUND

- B0* $=$!B2.!B1.!B0.I + ! B2.B1.!B0.! I
B0*

B2.B1 B0.I	00	01	11	10
00		$\mathbf{1}$		
01	$\mathbf{1}$			
11				
10				

- FOUND = B2.!B1.!B0
- Note that FOUND does not need a K-Map. It is always " 1 " (i.e. True) when we are in state $S 4$ (i.e. when $\mathrm{B} 2=1, \mathrm{~B} 1=0, \mathrm{~B} 0=0$)

3. Design the Circuit

Note that CLK is the input to ALL the D-FFs' clock inputs. This is a synchronous machine.

Note the use of labels (example: B2 or B0-bar) instead of routing wires all over the place!

Note that I issued both Bn and Bn bar from all the D-FFs - it makes it easier with the labeling and you won't have to use NOT gates!

Note that the sole output (FOUND) does not need a D-FF because it is NOT A STATE BIT!

YOUR TO-DOs

- Lab 8
- Start on Thursday
- Due back on Wednesday (last week of classes)
- Paper copy - not electronic
-Drop off in the CS64 BOX in HFH $2^{\text {nd }}$ Floor

