
Introduction	to		
Finite	State	Machines	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#16	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	





Administrative	

•  Lab	#8	
– On	Thursday	
– Due	next	week	on	Wednesday	
– Paper	copy	

3/5/19	 Matni,	CS64,	Wi19	 3	



Administrative	

•  The	Last	3	Weeks	of	CS	64:	

3/5/19	 Matni,	CS64,	Wi19	 4	

Date	 L	#	 Topic	 Lab	 Lab	Due	

2/26	 14	 Combinatorial	Logic,	
Sequential	Logic	1	 7	(CL+SL)	 Wed.	3/6	

2/28	 15	 Sequential	Logic	2	
3/5	 16	 FSM	1	

8	(FSM)	 Wed.	3/13	
3/7	 17	 FSM	2	
3/12	 18	 Digital	Logic	Review	

9	(Ethics)	 Fri.	3/15	
3/14	 19	 CS	Ethics	&	Impact	

Final	Exam	Review	



Lecture	Outline	

•  Finite	State	Machines	

– Moore	vs.	Mealy	types	

– State	Diagrams	

– Figuring	out	a	circuit	for	a	FSM	

3/5/19	 Matni,	CS64,	Wi19	 5	



3/5/19	 Matni,	CS64,	Wi19	 6	

If	a	combinational	logic	circuit	is	an	
implementation	of	a	Boolean	function,	

	
then	a	sequential	logic	circuit	can	be	
considered	an	implementation	of		

a	finite	state	machine.	



Finite	State	Machines	(FSM)	

•  A	State	=	An	output	or	collection	of	outputs	of	a	digital	
“machine”	

•  A	Machine	=	A	computational	entity	that	predictably	works	
based	on	one	or	more	input	conditions	and	yields	a	logical	
output	

•  A	Finite	State	Machine:	An	abstract	machine	that	can	be	in	
exactly	one	of	a	finite	number	of	states	at	any	given	time	

3/5/19	 Matni,	CS64,	Wi19	 7	



Finite	State	Machines	(FSM)	
•  The	FSM	can	change	from	one	state	to	another	in	response	to	some	

external	inputs	

•  The	change	from	one	state	to	another	is	called	a	transition.		

•  An	FSM	is	defined	by	a	list	of	its	states,	its	initial	state,		
	 	 	 	 	 	and	the	conditions	for	each	transition.	

3/5/19	 Matni,	CS64,	Wi19	 8	

STATE	
“A”	

Starting	point	
STATE	
“B”	

Transition	A->B	

Transition	B->A	



Example	of	a	Simple	FSM:	
The	Turnstile	

	 	 					initial	state	
State	Transition	Table	

3/5/19	 Matni,	CS64,	Wi19	 9	Source:	Wikipedia	

Current	
State	

Input	 Next		
State	

Output	

Locked	 Coin	 Unlocked	 Unlocks	the	turnstile	so	that	the	customer	can	push	through.	

Locked	 Push	 Locked	 Nothing	–	you’re	locked!	J	

Unlocked	 Coin	 Unlocked	 Nothing	–	you	just	wasted	a	coin!	J	

Unlocked	 Push	 Locked	 When	the	customer	has	pushed	through,	locks	the	turnstile.	



Example	of	a	Simple	FSM:	
The	Turnstile	

	 	 					initial	state	
State	Transition	Table	

3/5/19	 Matni,	CS64,	Wi19	 10	Source:	Wikipedia	

Current	
State	

Input	 Next		
State	

Output	

Locked	 Coin	 Unlocked	 Unlocks	the	turnstile	so	that	the	customer	can	push	through.	

Locked	 Push	 Locked	 Nothing	–	you’re	locked!	J	

Unlocked	 Coin	 Unlocked	 Nothing	–	you	just	wasted	a	coin!	J	

Unlocked	 Push	 Locked	 When	the	customer	has	pushed	through,	locks	the	turnstile.	

This	is	called	a	
state	diagram	

		 											à	



General	Form	of	FSMs	

3/5/19	 Matni,	CS64,	Wi19	 11	



Example	

3/5/19	 Matni,	CS64,	Wi19	 12	

A	
	

CLK	

Q*	

Q*	=	QO.A	
(read	as:	the	next-state	of	Q	will	be	QO.A)	

i.e.	On	the	next	rising	edge	of	the	clock,	the	output	of	
the	D-FF	(Q*)	will	become		

the	previous	value	of	Q	(QO)	AND	the	value	of	input	A	

Qo	Combinatorial	logic	

State	register	Clock	signal	

Output-to-input	feedback	



FSM	Types	

There	are	2	types/models	of	FSMs:	
•  Moore	machine	
–  Output	is	function	of	present	state	only	

•  Mealy	machine	
–  Output	is	function	of	present	state	and	present	input	

3/5/19	 Matni,	CS64,	Wi19	 13	



Moore	Machine	

3/5/19	 Matni,	CS64,	Wi19	 14	

Output	is	function	of	present	state	only	



Example	of	a	Moore	Machine	
(with	1	state)	

3/5/19	 Matni,	CS64,	Wi19	 15	

A	
	

CLK	

Z	

Z	=	(Q*	+	B)	=	(QO.A	+	B)	
On	the	next	rising	edge	of	the	clock,	the	output	of	the	entire	circuit	(Z)	

will	become		
(the	previous	value	of	Q	(QO)	AND	the	value	of	input	A)	NOR	B	

	
NOTE:				CLK	is	NOWHERE	IN	THE	EQUATION!!!	

B	

Q	

Output	is	function	of	present	state	only	



Mealy	Machine	

3/5/19	 Matni,	CS64,	Wi19	 16	

Output	is	function	of	present	state	and	present	input	

Makes	the	difference	w/	Moore	Machines	



Example	of	a	Mealy	Machine	
(with	1	state)	

3/5/19	 Matni,	CS64,	Wi19	 17	

A	
	

CLK	
	
B	

Z	

Z	=	(Q*	+	A	+	B)	=	(QO	XOR	A)	+	(A	+	B)	

On	the	next	rising	edge	of	the	clock,	the	output	of	the	entire	
circuit	(Z)	will	become	…etc…	

Q	

Output	is	function	of	present	state	and	present	input	



Example	of	a	Moore	Machine	

WASHER_DRYER	

•  Let’s	“build”	a	sequential	logic	FSM	that	acts	as	a	controller	
to	a	simplistic	washer/dryer	machine	

•  This	machine	takes	in	various	inputs	in	its	operation	(we’ll	
only	focus	on	the	following	sensor-based	ones):	

•  This	machine	also	issues	1	output	while	running:	

3/5/19	 Matni,	CS64,	Wi19	 18	

Coin	is	in	(vs	it	isn’t	in)		
Soap	is	present	(vs	it’s	used	up)	 		
Clothes	are	still	wet	(vs	clothes	are	dry)	

“Done”	indicator	



Machine	Design	

•  We	want	this	machine	to	have	4	distinct	states	that	
we	go	from	one	to	the	next	in	this	sequence:	

1.   Initial	State	
–  Where	we	are	when	we	are	waiting	to	start	the	wash	

2.   Wash	
–  Where	we	wash	with	soap	and	water	

3.   Dry	
–  Where	we	dry	the	clothes	

4.   Done	

3/5/19	 Matni,	CS64,	Wi19	 19	



Combining	the	Inputs	

•  Let’s	create	a	variable	called	GTNS	(i.e.	Go	To	Next	State)	

•  GTNS	is	1	if	any	of	the	following	is	true:	
–  Coin	is	in	
–  Soap	is	no	longer	detected	
–  Clothes	are	now	dry	
–  I	assume	that	these	3	inputs	to	be	mutually	exclusive	

3/5/19	 Matni,	CS64,	Wi19	 20	

Coin	is	in	(vs	it	isn’t	in)		
Soap	is	no	longer	detected	(vs	it’s	still	there)	 		
Clothes	are	now	dry	(vs	clothes	are	still	wet)	



What’s	Going	to	
Happen? 	 	1/2	

•  We	start	at	an	“Initial”	state	whenever	we	start	up	the	machine	
–  Let’s	also	assume	this	stage	is	when	you’d	put	in	the	soap	and	clothes	
–  Once	input	“Coin	is	in”	is	1,	GTNS	is	now	1	
–  This	event	triggers	leaving	the	current	state	to	go	to	the	next	state	

•  This	is	followed	by	the	next	state,	“Wash”	
–  “Coin	inserted”	is	now	0	at	this	point	(so	GTNS	goes	back	to	0)	
–  While	soap	is	still	present,	GTNS	goes	back	to	0	
–  When	the	input	“Soap	is	no	longer	present”	goes	to	1,	GTNS	goes	to	1	
–  This	event	triggers	leaving	the	current	state	to	go	to	the	next	state	

3/5/19	 Matni,	CS64,	Wi19	 21	

Coin	is	in	(vs	it	isn’t	in)		
Soap	is	no	longer	detected	(vs	it’s	still	there)		
Clothes	are	now	dry	(vs	clothes	are	still	wet)	



•  This	is	followed	by	the	next	state,	“Dry”	
–  This	new	state	sets	an	output	that	triggers	a	timer	
–  The	input	“Soap	is	no	longer	present”	goes	to	0,	so	GTNS	is	0	also	
–  While	the	input	“Clothes	are	now	dry”	is	0	,	GTNS	remains	at	0	too	
–  When	the	input	“Clothes	are	now	dry”	is	1,	GTNS	changes	to	1	
–  This	event	triggers	leaving	the	current	state	to	go	to	the	next	state	

•  This	is	followed	by	the	next	and	last	state,	“Done”	
–  When	you’re	here,	you	go	back	to	the	“initial”	state	
–  No	inputs	to	consider:	you	do	move	this	regardless	

3/5/19	 Matni,	CS64,	Wi19	 22	

What’s	Going	to	
Happen? 	 	2/2	

Coin	is	in	(vs	it	isn’t	in)		
Soap	is	no	longer	detected	(vs	it’s	still	there)		
Clothes	are	now	dry	(vs	clothes	are	still	wet)	



3/5/19	 Matni,	CS64,	Wi19	 23	

State	Diagram	for	
Washer-Dryer	Machine	

Wash	

Done	

Initial	
State	

GTNS	

DONE	=	1	

DONE	=	0	

inputs	

outputs	
state	

transition	

GTNS	

GTNS	

1	

Dry	

GTNS	

GTNS	=	COIN_IN	+	NO_SOAP	+	CLTHS_DRY	



Unconditional	Transitions	

•  Sometimes	the	transition	is	unconditional	
–  Does	not	depend	on	any	input	–	it	just	happens	

•  We	then	diagram	this	as	a	“1”	(for	“always	does	this”)	

3/5/19	 24	

State	2	State	0	
K	=	1	

State	1	

K	=	0	
1	

K	=	0	K	=	1	



Representing	The	States	
•  How	many	bits	do	I	need	to	represent	all	the	states	in	this	Washer-Dryer	

Machine?	

•  There	are	4	unique	states	(including	“init”)	
–  So,	2	bits	

•  If	my	state	machine	will	be	built	using	a	memory		
circuit	(most	likely,	a	D-FF),	how	many	of	these		
should	I	have?	
–  2	bits	=	2	D-FFs	

•  There	is	another	scheme	to	do	this	called	“One	Hot	Method”.		
–  More	on	this	later…	

	
3/5/19	 Matni,	CS64,	Wi19	 25	

State	 S1	 S0	
Initial	 0	 0	
Wash	 0	 1	
Rinse	 1	 0	
Dry	 1	 1	



Example	of	a	Moore	Machine	2	
DETECT_1101	

•  Let’s	build	a	sequential	logic	FSM	that	always	detects	a	specific	
serial	sequence	of	bits:	1101	

	
•  We’ll	start	at	an	“Initial”	state	(S0)	
•  We’ll	first	look	for	a	1.	We’ll	call	that	“State	1”	(S1)	

–  Don’t	go	to	S1	if	all	we	find	is	a	0!	

•  We’ll	then	keep	looking	for	another	1.	We’ll	call	that		
“State	11”	(S2)	

3/5/19	 Matni,	CS64,	Wi19	 26	



Example	of	a	Moore	Machine	2	
DETECT_1101	

•  Then…	a	0.	We’ll	call	that	“State	110”	(S3)	

•  Then	another	1.	
We’ll	call	that	“State	1101”(S4)	–	this	will	also	output	a	FOUND	signal	

•  We	will	always	be	detecting	“1101”	(it	doesn’t	end)	
	So,	as	SOON	as	S4	is	done,	we	keep	looking	for	1s	or	0s	

•  Example:		if	the	input	stream	is		111101110101101000011111011011	
	 	 	we	detect	“1101”	at 													ñ		ñ				ñ									ñ ñ	

3/5/19	 Matni,	CS64,	Wi19	 27	

111101110101101000011111011011	



State	Diagram	2	

3/5/19	 Matni,	CS64,	Wi19	 28	

“1”	 “11”	

“110”	“1101”	

Initial	
State	

Input	=	0	 Input	=	1	

Input	=	1	

Input	=	0	

Input	=	0	

FOUND	=	1	

Input	=	1	

S0	

S4	 S3	

S2	S1	



Representing	The	States	
•  How	many	bits	do	I	need	to	represent	all	the	states	in	this	

“Detect	1101”	Machine?	

•  There	are	5	unique	states		
(including	“init”)	
–  So,	3	bits	

•  How	many	D-FFs	should	I	have	
to	build	this	machine?	
–  3	bits	=	3	D-FFs	

	

3/5/19	 Matni,	CS64,	Wi19	 29	

State	 B2	 B1	 B0	

Initial	 0	 0	 0	
Found	“1”	 0	 0	 1	
Found	“11”	 0	 1	 0	
Found	“110”	 0	 1	 1	
Found	“1101”	 1	 0	 0	



Designing	the	Circuit	for	the	FSM	

1.  We	start	with	a	T.T	

–  Also	called	a	“State	Transition	Table”	

2.  Make	K-Maps	and	simplify	

–  Usually	give	your	answer	as	a	“sum-of-products”	form	

3.  Design	the	circuit	
–  Have	to	use	D-FFs	to	represent	the	state	bits	

3/5/19	 Matni,	CS64,	Wi19	 30	



1.	The	Truth	Table		
(The	State	Transition	Table)	

3/5/19	 Matni,	CS64,	Wi19	 31	

State	 B2	 B1	 B0	 I	 B2*	 B1*	 B0*	 FOUND	

Initial	 0	 0	 0	 0	 0	 0	 0	 0	

1	 0	 0	 1	 0	

Found	“1”	 0	 0	 1	 0	 0	 0	 0	 0	

1	 0	 1	 0	 0	

Found	“11”	 0	 1	 0	 0	 0	 1	 1	 0	

1	 0	 1	 0	 0	

Found	“110”	 0	 1	 1	 0	 0	 0	 0	 0	

1	 1	 0	 0	 0	

Found	“1101”	 1	 0	 0	 0	 0	 0	 0	 1	

1	 0	 1	 0	 1	

CURRENT	STATE	 NEXT	STATE	INPUT(S)	 OUTPUT(S)	



2.	K-Maps	for	B2*	and	B1*	

•  B2*	=	!B2.B1.B0.I	
– No	further	simplification		

•  B1*	 	=	!B2.!B1.B0.I	
	 	 	+	B2.!B1.!B0.I	
	 	 	+	!B2.B1.!B0	

3/5/19	 Matni,	CS64,	Wi19	 32	

B2.B1	
B0.I	

00	 01	 11	 10	

00	

01	

11	 1	

10	

B2.B1	
B0.I	

00	 01	 11	 10	

00	 1	

01	 1	 1	

11	 1	

10	

B2*	

B1*	

You	need	to	
do	this	for	all	
state	outputs	



2.	K-Map	for	B0*	
Output	FOUND	

•  B0*		=	!B2.!B1.!B0.I	
	 	 	+	!B2.B1.!B0.!I	

•  FOUND 	=	B2.!B1.!B0	
–  Note	that	FOUND	does	not	need	
a	K-Map.	It	is	always	“1”	(i.e.	True)	when	we	are	in	state	S4	
(i.e.	when	B2=1,	B1=0,	B0=0)	

3/5/19	 Matni,	CS64,	Wi19	 33	

B2.B1	
B0.I	

00	 01	 11	 10	

00	 1	

01	 1	

11	

10	

B0*	



3/5/19	 Matni,	CS64,	Wi19	 34	

3.	Design	the	
Circuit	

Note	that	CLK	is	the	input	to	ALL	
the	D-FFs’	clock	inputs.	This	is	a	
synchronous	machine.	
	
Note	the	use	of	labels	(example:	B2	
or	B0-bar)	instead	of	routing	wires	
all	over	the	place!	
	
Note	that	I	issued	both	Bn	and	Bn-
bar	from	all	the	D-FFs	–	it	makes	it	
easier	with	the	labeling	and	you	
won’t	have	to	use	NOT	gates!	
	
Note	that	the	sole	output	(FOUND)	
does	not	need	a	D-FF	because	it	is	
NOT	A	STATE	BIT!	



YOUR	TO-DOs	

•  Lab	8	
– Start	on	Thursday	
– Due	back	on	Wednesday	(last	week	of	
classes)	
– Paper	copy	–	not	electronic	
– Drop	off	in	the	CS64	BOX	in	HFH	2nd	Floor	

3/5/19	 Matni,	CS64,	Wi19	 35	



3/5/19	 Matni,	CS64,	Wi19	 36	


