
Intro	to	Sequential	Logic	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#14	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	



Administrative	

•  Lab	#7	
– On	Thursday	
–  It’s	a	little	on	the	tough	side,	so	partner	up	if	you	
want	to	

– Due	next	week	on	Wednesday	
– Paper	copy	

2/26/19	 Matni,	CS64,	Wi19	 2	



Lecture	Outline	

•  General	ALU	Design	

•  Sequential	Logic	

•  S-R	Latch	

•  D-Latch	

•  Reviewing	what’s	needed	for	Lab	7		

2/26/19	 Matni,	CS64,	Wi19	 3	



Arithmetic-Logic	Unit	(ALU)	

•  Recall:	the	ALU	does	all	the	computations	
necessary	in	a	CPU	

•  The	previous	circuit	was	a	simplified	ALU:	
– When	S	=	00,	R	=	A	+	B	
– When	S	=	01,	R	=	A	–	B	
– When	S	=	10,	R	=	A	AND	B	
– When	S	=	11,	R	=	A	OR	B	

2/26/19	 Matni,	CS64,	Wi19	 4	



Simplified	ALU	

•  We	can	string	1-bit	ALUs	together	to		
make	bigger-bit	ALUs	(e.g.	32b	ALU)	

2/26/19	 Matni,	CS64,	Wi19	 5	

1bit	
ALU

	 …	

A31	B31		S	

R0 	 	 		R1 	 	 				R2	 	 	 	R3 	 	 	 	R31		

1bit	
ALU	

Co	

R	
A	
B	
S	

Ci	

1bit	
ALU

	

1bit	
ALU

	

1bit	
ALU

	

1bit	
ALU

	

A0	B0		S				 	A1		B1		S				 					A2	B2		S				 								A3		B3		S	
	
	
	

				Co												Ci		



Abstract	Schematic	of	the	MIPS	CPU	
Relevant	to	a	future	lab…	

2/26/19	 Matni,	CS64,	Wi19	 6	



Combinatorial	vs.	Sequential	Logic	

•  The	CPU	schematic	shows		
	 	 	 	both	combinatorial	and	sequential	logic	blocks	

•  Combinatorial	Logic	
–  Combining	multiple	logic	blocks	
–  The	output	is	a	function	only	of	the	present	inputs	
–  There	is	no	memory	of	past	“states”	

•  Sequential	Logic	
–  Combining	multiple	logic	blocks	
–  The	output	is	a	function	of	both	the	present	inputs	and	past	inputs	
–  There	exists	a	memory	of	past	“states”	

2/26/19	 Matni,	CS64,	Wi19	 7	



The	S-R	Latch	

•  Only	involves	2	NORs	

•  The	outputs	are	fed-back	to	
the	inputs	

•  The	result	is	that	the	output	
state	(either	a	1	or	a	0)	is	
maintained	even	if	the	input	
changes!		

2/26/19	 Matni,	CS64,	Wi19	 8	



How	a	S-R	Latch	Works	
•  Note	that	if	one	NOR	input	is	0,	the	output	

becomes	the	inverse	of	the	other	input	

•  So,	if	output	Q	already	exists	and	if		
S	=	0,	R	=	0,	then	Q	will	remain	at	whatever	
it	was	before!	(hold	output	state)	

•  If	S	=	0,	R	=	1,	then	Q	becomes	0		
(reset	output)	

•  If	S	=	1,	R	=	0,	then	Q	becomes	1		
(set	output)	

•  Making	S	=	1,	R	=	1	is	not	allowed		
(gives	an	undetermined	output)	2/26/19	 9	

S	 R	 Q0	 Comment	
0	 0	 Q*	 Hold	output	
0	 1	 0	 Reset	output	
1	 0	 1	 Set	output	
1	 1	 X	 Undetermined	



Consequences?	

•  As	long	as	S	=	0	and	R	=	0,		
the	circuit	output	holds	memory		
of	its	prior	value	(state)	

•  To	change	the	output,	just	make	
S	=	1	(but	also	R	=	0)	to	make	the	output	1	(set)	OR		
S	=	0	(but	also	R	=	1)	to	make	the	output	0	(reset)	

•  Just	avoid	S	=	1,	R	=	1…	

2/26/19	 Matni,	CS64,	Wi19	 10	

S	 R	 Q0	 Comment	
0	 0	 Q*	 Hold	output	
0	 1	 0	 Reset	output	
1	 0	 1	 Set	output	
1	 1	 X	 Undetermined	



About	that	S	=	1,	R	=	1	Case…	

•  What	if	we	avoided	it	on	purpose	by	making		
R	=	NOT	(S)?	
– Where’s	the	problem?	

•  This,	by	itself,	precludes	a	case	when	R	=	S	=	0	
–  You’d	need	that	if	you	want	to		

	 	 	 	 	preserve	the	previous	output	state!	

•  Solution:	the	clocked	latch	and	the	flip-flop	

2/26/19	 Matni,	CS64,	Wi19	 11	

S/R’	

S	 R	 Q0	 Comment	

0	 0	 Q*	 Hold	output	

0	 1	 0	 Reset	output	

1	 0	 1	 Set	output	

1	 1	 X	 Undetermined	



Adding	an	“Enable”	Input:	
The	Gated	S-R	Latch	

•  Create	a	way	to	“gate”	the	inputs	
–  R/S	inputs	go	through	only	if	an		

“enable	input”	(E)	is	1	
–  If	E	is	0,	then	the	S-R	latch	gets	SR	=	00	

and	it	hold	the	state	of	previous	outputs	

•  So,	the	truth	table	would	change	from	a	“normal”	S-R	Latch:	

2/26/19	 Matni,	CS64,	Wi19	 12	

S	 R	 Q0	 Comment	
0	 0	 Q*	 Hold	output	
0	 1	 0	 Reset	output	
1	 0	 1	 Set	output	
1	 1	 X	 Undetermined	

S	 R	 E	 Q0	 Comment	
X	 X	 0	 Q*	 Hold	output	
0	 1	 1	 0	 Reset	output	
1	 0	 1	 1	 Set	output	

We	got	rid	of	the	“undetermined”	state!!!	JJJ	



Combining	R	and	S	inputs	into	One:	
The	Gated	D	Latch	

•  Force	S	and	R	inputs		
to	always	be	opposite		
of	each	other	
–  Make	them	the	same	as	

an	input	D,		
where	D	=	S	and	!D	=	R.	

•  Create	a	way	to	“gate”	the	D	input	
–  D	input	goes	through		

only	if	an	enable	input	(E)	is	1	
–  If	E	is	0,	then	hold	the	state	of	the	

previous	outputs	

2/26/19	 Matni,	CS64,	Wi19	 13	

D	
	
	
E	

S	
	
	
	
	
R	

Q	
	
	
	
Q	

D	 E	 Q0	 Comment	
X	 0	 Q*	 Hold	output	
0	 1	 0	 Reset	output	
1	 1	 1	 Set	output	

We	got	rid	of	an	extra	input!!!	JJJ	



The	Gated	D	Latch	
•  The	gated	D-Latch	is	very	commonly	used	in	electronic	circuits	

in	computer	hardware,	especially	as	a	register	because	it’s	a	
circuit	that	holds	memory!	

Whatever	data	you	present	to	the	input	D,		

the	D-Latch	will	hold	that	value	(as	long	as	input	E	is	0)	

You	can	present	this	value	to	output	Q	as	soon	as	input	E	is	1.	

There	is	no	synchronicity	to	this	circuit	(meaning	what???)		
2/26/19	 Matni,	CS64,	Wi19	 14	

D	
	
	
E	

Q	
	
	
Q	



Lab	7	

2/26/19	 Matni,	CS64,	Wi19	 15	



What’s	Lab	7	About?	
•  Task	1:	Design	a	“simple”	ALU	
•  Task	2:	Design	a	“simple”	Register	Block	using	D-Latches	
•  Task	3:	You	are	given	a	specification	for	a	“simple”	CPU	that	uses:	

–  1	“Simple”	Register	Block	
–  1	“Simple”	ALU	
–  1	Abstract	Computer	Memory	Interface	
–  As	many	ANDs,	ORs,	NOTs,	XORs,	Muxes	that	you	need	

•  Design	this	CPU!	(Task	3)	

•  You	will	draw	all	of	these	(BE	NEAT!)	
–  Turn	it	in	(physical	copy)	at	the	CS64	BOX	in	HFH	on	2nd	floor	

2/26/19	 Matni,	CS64,	Wi19	 16	



Abstract	Schematic		
of	the	MIPS	CPU	

2/26/19	 Matni,	CS64,	Wi19	 17	



Register	Object	for	
Lab	7	(Task	2)	

2/26/19	 Matni,	CS64,	Wi19	 18	

I/O	Name	 I/O	Description	

R0	
The	first	register	to	read,	as	a	single	bit.	
If	0,	then	reg0	should	be	read.	If	1,	
then	reg1	should	be	read.	

R1	
The	second	register	to	read,	as	a	single	bit.	
If	0,	then	reg0	should	be	read.	If	1,	
then	reg1	should	be	read.	

WR	

“Write	Register”.	Specifies	which	register	
to	write	to.	If	0,	then	reg0	should	be	
written	to.	If	1,	then	reg1	should	be	
written	to.	

W	
The	data	that	should	be	written	to	the	
register	specified	by	WR.	This	is	a	single	
bit.	

WE	

“Write	Enable”.	If	1,	then	we	will	write	to	
a	register.	If	0,	then	we	will	not	write	to	a	
register.	Note	that	if	WE	=	0,	then	the	
inputs	to	WR	and	W	are	effectively	
ignored.	

O1	

Value	of	the	first	register	read.	As	
described	previously,	this	depends	on	
which	register	was	selected	to	be	read,	
via	R0.	

O2	

Value	of	the	second	register	read.	As	
described	previously,	this	depends	on	
which	register	was	selected	to	be	read,	
via	R1.	

This	will	be	made	from	D-FFs	or	D-Latches	
and	Combinatorial	Logic	



Memory	Interface	
Object	for	Lab	7	

2/26/19	 Matni,	CS64,	Wi19	 19	

I/O	Name	 I/O	Description	

A0	 Bit	0	of	the	address	(LSB)	

A1	 Bit	1	of	the	address	(MSB)	

OE	

“Output	Enable”.	If	1,	then	the	value	at	
the	address	specified	by	A0	and	A1	will	be	
read,	and	sent	to	the	output	line	O.	If	0,	
then	the	memory	will	not	be	accessed,	
and	the	value	sent	to	the	output	line	is	
unspecified	(could	be	either	0	or	1,	in	an	
unpredictable	fashion).	

W	 The	value	to	write	to	memory.	

WE	

“Write	Enable”.	If	1,	then	the	value	sent	
into	W	will	be	written	to	memory	at	the	
address	specified	by	A0	and	A1.	If	0,	then	
no	memory	write	occurs	(the	value	sent	to	
W	will	be	ignored).	

O	 The	value	read	from	memory	(or	
unspecified	if	OE	=	0).		



Task	3:	Build	a	Mock-CPU!	

2/26/19	 Matni,	CS64,	Wi19	 20	

Actually, just a small instruction decoder and executor… 

OP1	 OP0	 B0	 B1	 B2	 Human-readable	Encoding	 Description	

0	 0	 0	 0	 0	 xor	reg0,	reg0,	reg0	 Compute	the	XOR	of	the	contents	of	reg0	with	the	
contents	of	reg0,	storing	the	result	in	reg0.	

0	 1	 1	 0	 1	 nor	reg1,	reg0,	reg1	 Compute	the	NOR	of	the	contents	of	reg0	with	the	
contents	of	reg1,	storing	the	result	in	reg1.	

1	 0	 1	 0	 1	 load	reg1,	01	 Copy	the	bit	stored	at	address	01	(decimal	1)	into	
register	reg1.	

1	 1	 0	 1	 0	 store	reg0,	10	 Store	the	contents	of	reg0	at	address	10	(decimal	2)	
1	 1	 1	 1	 1	 store	reg1,	11	 Store	the	contents	of	reg1	at	address	11	(decimal	3)	

These	say	something	about	which	operation	is	being	done	
These	say	something	about	which	registers	are	used	



Hints	for	Task	3	
•  Design	the	final	circuit	in	pieces:	

–  One	piece	for	each	of	the	3	types	of	instruction:	load,	store,	XOR/NOR	

•  For	example,	the	store	task:	
–  If	an	output	isn’t	used,	tie	it	to	a	permanent	“0”	(i.e.	ground)	
–  If	an	input	isn’t	used,	then	you	can	use	“X”	(don’t	care)	on	it	

2/26/19	 Matni,	CS64,	Wi19	 21	

What	registers	
am	I	using?	
Which	instruction	
bits	go	where?	

What	controls	
should	I	use?	
What	values	
should	they	be?	

How	do	I	best	
connect	the	
registers	to	the	
memory	interface?	
Again,	ask	yourself	
if	some	of	the	
inputs	here	should	
be	op-code	bits.	

Is	the	output	even	
used	in	this	“store”	
task?		



Tying	In	All	The	Pieces	(Task	3)	

•  Now	see	how	they	can	all	fit	together	
–  You	will	have	1	register	block	+	1	memory	interface	
–  You	won’t	need	to	use	any	additional	latches	here	
–  You	will	need	to	use	muxes	and	regular	logic	
(and	the	simple	ALU	you	designed	earlier	–	see	lab	
instructions	for	more	details)	

•  REQUIREMENT:		
Use	ONLY	1	register	block,	1	ALU,		

and	1	memory	interface	

2/26/19	 Matni,	CS64,	Wi19	 22	



YOUR	TO-DOs	

•  Lab	7	
– Start	on	Thursday	
– Due	back	on	Wednesday	
– Paper	copy	–	not	electronic	
– Drop	off	in	the	CS64	BOX	in	HFH	2nd	Floor	

2/26/19	 Matni,	CS64,	Wi19	 23	



2/26/19	 Matni,	CS64,	Wi19	 24	


