Combinatorial Logic

CS 64: Computer Organization and Design Logic
Lecture \#13
Winter 2019

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

- Lab \#6
- Due by Monday

Any Questions From Last Lecture?

Any Questions About the Labs?

5 Minute Pop Quiz!

- Given the following K-Map for binary function F:

B	$A C$	00	11	10
0	1			1
1	1	1	1	

a) Group properly and write the optimized function \mathbf{F}
b) draw the circuit

5 Minute Pop Quiz!

- Given the following K-Map for binary function F:

$B A C$		00	01	11	10	
\leftarrow	0	1			1	\rightarrow
	1	1	1	1		

a) Group properly and write the optimized function F

$$
F=!B!C+B C+!A!C
$$

b) draw the circuit

See black board

Combinatorial Logic Designs

- When you combine multiple logic blocks together to form a more complex logic function/circuit

What is its truth table?

| C ${ }^{\mathrm{AB}}$ What is its K-Map? |
| :--- |$|$| | | | | |
| ---: | ---: | ---: | ---: | ---: |
| 0 | 1 | 1 | 1 | 1 |
| 1 | | | 1 | |

A	B	C	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Combinatorial Logic

- Combines multiple logic blocks
- The output is a function only of the present inputs
- There is no memory of past "states"
- That is, the output changes as soon as any of the inputs change

Popular Combinatorial Logic Example: The Multiplexer

- A logical selector:
- Select either input A or input B to be the output
// if s = 0, output is a
// if s = 1, output is b
int mux(int $a, i n t b, i n t s)$
\{
if (!s) return a;
else return b;
\}

Multiplexer
 (Mux for short)

- Typically has 3 groups of inputs and 1 output
- IN: 2 data , 1 select
- OUT: 1 data

- 1 of the input data lines gets selected to become the output, based on the $3^{\text {rd }}$ (select) input
- If "Sel" = 0, then I_{0} gets to be the output
- If "Sel" = 1 , then I_{1} gets to be the output
- The opposite of a Mux is called a Demulitplexer (or Demux)

Mux Configurations

Muxes can have I/O that are multiple bits

Or they can have more than two data inputs

The Use of Multiplexers

- Makes it possible for several signals (variables) to share one resource
- Very commonly used in data communication lines

Mux Truth Table and Logic Circuit

Selection Lines in Muxes

- General mux description: N-bit, M-to-1
- Where: $N=$ how "wide" the input is (\# of input bits, min. 1)
$\mathrm{M}=$ how many inputs to the mux (min. 2)
- The "select" input (S) has to be able to select 1 out of M inputs
- So, if $M=2, \quad S$ should be at least 1 bit ($S=0$ for one line, $S=1$ for the other)
- But if $M=3, \quad S$ should be at least 2 bits (why?)
- If $M=4, \quad S$ should be ???
(ANS: at least 2 bits)
- If $\mathrm{M}=5, \quad \mathrm{~S}$ should be ??? (ANs: at least 3 bits)

Combining Muxes Together

Can I do a 4:1 mux from 2:1 muxes?

Generally, you can do $\mathbf{2}^{\text {n }}$: $\mathbf{1}$ muxes from 2:1 muxes.

What Does This Circuit Do? Class इxo

What Does This Circuit Do? Class Exo

What Does This Circuit Do?

Complete the time-axis diagram...

YOUR TO-DOs

- Lab 6!

