Combinatorial Logic

CS 64: Computer Organization and Design Logic Lecture #13 Winter 2019

> Ziad Matni, Ph.D. Dept. of Computer Science, UCSB

Administrative

- Lab #6
 - Due by <u>Monday</u>

Any Questions From Last Lecture?

Any Questions About the Labs?

5 Minute Pop Quiz!

• Given the following K-Map for binary function **F**:

BAC	00	01	11	10
0	1			1
1	1	1	1	

- a) Group properly and write the optimized function **F**
- b) draw the circuit

5 Minute Pop Quiz!

• Given the following K-Map for binary function **F**:

- a) Group properly and write the optimized function **F F** = **!B!C** + **BC** + **!A!C**
- b) draw the circuit

See black board

2/21/19

Combinatorial Logic Designs

• When you *combine* multiple logic blocks together to form a more complex logic function/circuit

	00	01	11	10
0	1	1	1	1
1			1	

What is its truth table?

Α	В	С	F
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2/21/19

Matni, CS64, Wi19

7

Combinatorial Logic

- Combines multiple logic blocks
- The output is a function **only** of the present inputs
- There is no memory of past "states"
 - That is, the output changes as soon as any of the inputs change

Popular Combinatorial Logic Example: The Multiplexer

• A logical selector:

- Select either input A or input B to be the output

```
// if s = 0, output is a
// if s = 1, output is b
int mux(int a, int b, int s)
{
    if (!s) return a;
    else return b;
}
```

Multiplexer (Mux for short)

- Typically has 3 groups of inputs and 1 output
 - IN: 2 data , 1 select
 - OUT: 1 data

- 1 of the input data lines gets selected to become the output, based on the 3rd (select) input
 - If "Sel" = 0, then I_0 gets to be the output
 - If "Sel" = 1, then I_1 gets to be the output
- The opposite of a Mux is called a Demulitplexer (or Demux)

2/21/19

Matni, CS64, Wi19

Mux Configurations

Or they can have more than two data inputs

The Use of Multiplexers

- Makes it possible for several signals (variables) to share one resource
 - Very commonly used in data communication lines

Mux Truth Table and Logic Circuit

Selection Lines in Muxes

- General mux description: N-bit, M-to-1
- Where: N = how "wide" the input is (# of input bits, min. 1)
 M = how many inputs to the mux (min. 2)
- The "select" input (S) has to be able to select **1 out of M inputs**
 - So, if M = 2, S should be at least 1 bit (S = 0 for one line, S = 1 for the other)
 - But if M = 3, S should be at least 2 bits (why?)
 - If M = 4, S should be ??? (ANS: at least 2 bits)
 - If M = 5, S should be ??? (ANS: at least 3 bits)

M inputs

Combining Muxes Together

Can I do a **4:1** mux from 2:1 muxes?

Generally, you can do **2ⁿ:1** muxes from 2:1 muxes.

What Does This Circuit Do? Class Ex.

What Does This Circuit Do? Class Ex.

What Does This Circuit Do?

Complete the time-axis diagram...

→ time

YOUR TO-DOs

• Lab 6!

