Introduction to Digital Logic

CS 64: Computer Organization and Design Logic Lecture \#11
Winter 2019

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

- Lab 5 this week
- You can review your midterm with a TA during office hours
- Last name: A thru L Bay-Yuan Hsu F11 am-1 pm
- Last name: M thru Z Shiyu Ji F3 pm-5 pm
- If you can't go to these o/hs, you can see me instead, but let me know well-ahead of time first so I can get your exam from the TA...
- When reviewing your exams:
- Do not take pictures, do not copy the questions
- TA cannot change your grade
- If you have a legitimate case for grade change, the prof. will decide
- Legitimate = When we graded, we added the total points wrong
- Not legitimate $=$ Why did you take off N points on this question????

Lecture Outline

- Intro to Binary (Digital) Logic Gates
- Truth Table Construction
- Logic Functions and their Simplifications
- The Laws of Binary Logic

Digital i.e. Binary Logic

- Electronic circuits when used in computers are a series of switches
- 2 possible states: either ON (1) and OFF (0)

- Perfect for binary logic representation!

Basic Building Blocks of Digital Logic

- Same as the bitwise operators:

NOT
AND
OR
XOR etc...

- We often refer to these as "logic gates" in digital design

Electronic Circuit Logic Equivalents

Graphical Symbols and Truth Tables NOT

\mathbf{A}	$\overline{\mathbf{A}}$ or ! A
0	1
1	0

Graphical Symbols and Truth Tables AND and NAND

Practice Drawing the Symbold

\mathbf{A}	\mathbf{B}	$\mathbf{A} \cdot \mathbf{B}$
0	0	0
0	1	0
1	0	0
1	1	1
\mathbf{A}	\mathbf{B}	A.B !
0	0	1
0	1	1
1	0	1
1	1	0

Graphical Symbols and Truth Tables OR and NOR

Practice Drawing the Symbold

\mathbf{A}	\mathbf{B}	$\mathbf{A}+\mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	1

\mathbf{A}	\mathbf{B}	$\mathbf{A + B}$ or $!(\mathbf{A}+\mathbf{B})$
0	0	1
0	1	0
1	0	0
1	1	0

Graphical Symbols and Truth Tables XOR and XNOR

Prectice Drawing

\mathbf{A}	\mathbf{B}	$\mathbf{A} \oplus \mathbf{B}$	$\overline{\mathbf{A} \oplus \mathbf{B}}$
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

Constructing Truth Tables

- T.Ts can be applied to ANY digital circuit
- They show ALL possible inputs with ALL possible outputs
- Number of entries in the T.T.

$$
=\mathbf{2}^{\mathrm{N}}, \text { where } \mathrm{N} \text { is the number of inputs }
$$

Example: Constructing the T.T of a 1-bit Adder

- Recall the 1-bit adder:
- 3 inputs: I_{1} and I_{2} and C_{1}
- Input1, Input2, and Carry-In
- How many entries in the T.T. is that?
- 2 outputs: R and C_{o}
- Result, and Carry-Out
- You can have multiple outputs: each will still depend on some combination of the inputs

EXAMPLE:

Example: Constructing the T.T of a 1-bit Adder

T.T Construction Time!

Example: Constructing the T.T of a 1-bit Adder

	INPUTS				OUTPUTS	
	\#	11	12	C	CO	R
	0	0	0	0	0	0
Note the	1	0	0	1	0	1
inputs!!	2	0	1	0	0	1
	3	0	1	1	1	0
	4	1	0	0	0	1
	5	1	0	1	1	0
	6	1	1	0	1	0
	7	1	1	1	1	1

Logic Functions

- An output function F can be seen as a combination of 1 or more inputs
- Example:

$$
F=A . B+C \quad \text { (all single bits) }
$$

- This is called combinatorial logic

Equivalent in $\mathrm{C} / \mathrm{C++}$:

```
    boolean f (boolean a, boolean b, boolean c)
```

 \{
 return ((a \& b) | c);

OR and AND as Sum and Product

- Logic functions are often expressed with basic logic building blocks, like ORs and ANDs and NOTs, etc...
- OR is sometimes referred to as "logical sum" or "logical union"
- Partly why it's symbolized as " + "
- BUT IT’S NOT THE SAME AS NUMERICAL ADDITION!!!!!!!
- AND as "logical product" or "logical disjunction"
- Partly why it's symbolized as "."
- BUT IT'S NOT THE SAME AS NUMERICAL MULTIPLICATION!!!!!!!

Example

- A XOR B takes the value " 1 "
(i.e. is TRUE) if and only if
$-A=0, B=1$ i.e. ! $A \cdot B$ is TRUE, or
$-A=1, B=0$ i.e. $A .!B$ is TRUE
- In other words, A XOR B is TRUE iff (if and only if) $\mathbf{A}!\mathbf{B}+!\mathbf{A B}$ is TRUE

$$
A \oplus B=!A \cdot B+A \cdot!B
$$

Which can also be written as: $\quad \bar{A} \cdot B+A \cdot \bar{B}$

Representing the Circuit Graphically

\mathbf{A}	\mathbf{B}	$\mathbf{A} \oplus \mathbf{B}$
0	0	0
0	1	1
1	0	1
1	1	0

Q: Does it take any time for a electronic signal to go thru 3 "layers" of logic gates?

A: Ideally, NO, it all happens simultaneously.
In reality, OF COURSE it takes time (it's called latency)

What is The Logical Function for The Half Adder?

	INPUTS		OUTPUTS	
$\#$	$\mid 1$	12	CO	R
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	0

Our attempt to describe the outputs as functions of the inputs:

$$
\begin{aligned}
& C O=I_{1} \cdot I_{2} \\
& R=I_{1} \oplus I_{2}
\end{aligned}
$$

What is The Logical Function for

 A Full 1-bit adder?| $\# \#$ | $I 1$ | InPUTS | Cl | OUTPUTS | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 2 | 0 | 1 | 0 | 0 | 1 |
| 3 | 0 | 1 | 1 | 1 | 0 |
| 4 | 1 | 0 | 0 | 0 | 1 |
| 5 | 1 | 0 | 1 | 1 | 0 |
| 6 | 1 | 1 | 0 | 1 | 0 |
| 7 | 1 | 1 | 1 | 1 | 1 |

Ans.:

$$
\mathrm{CO}=!|1.12 . \mathrm{Cl}+\mathrm{I} 1 .!| 2 . \mathrm{Cl}+\mathrm{I} 1 .|2 .!\mathrm{Cl}+\mathrm{I} 1 .| 2 . \mathrm{Cl}
$$

$$
R=!|1 .!| 2 . C I+!11.12 .!C I+11 .!|2 .!C I+11 .| 2 . C I
$$

Minimization of Binary Logic

- Why?
- It's MUCH easier to read and understand...
- Saves memory (software) and/or physical space (hardware)
- Runs faster / performs better
- Why?... remember latency?
- For example, when we do the T.T. for (see demo on board):
$\mathbf{X}=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot!\mathbf{B}+\mathbf{B} \cdot!\mathbf{A}$, we find that it is the same as
$A+B$
(saved ourselves a bunch of logic gates!)

Using T.Ts vs. Using Logic Rules

- In an effort to simplify a logic function, we don't always have to use T.Ts - we can use logic rules instead

Example: What are the following logic outcomes?

$$
\begin{array}{ll}
A \cdot A & A \\
A+A & A
\end{array}
$$

$$
\begin{array}{ll}
\text { A. } 1 & \text { A } \\
\text { A }+1 & 1
\end{array}
$$

$$
\text { A. } 0
$$

$$
A+0 \quad A
$$

Using T.Ts vs. Using Logic Rules

- Binary Logic works in Associative ways
- (A.B).C is the same as A.(B.C)
$-(A+B)+C$ is the same as $A+(B+C)$
- It also works in Distributive ways
$-(A+B) \cdot C \quad$ is the same as: A.C + B.C
$-(A+B) \cdot(A+C)$ is the same as:

$$
\begin{aligned}
& \mathbf{A} \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{C}+\mathbf{B} \cdot \mathbf{A}+\mathbf{B} \cdot \mathbf{C} \\
= & A+A \cdot C+A \cdot B+B \cdot C \\
= & A+B \cdot C
\end{aligned}
$$

More Examples of Minimization a.k.a Simplification

- Simplify:

$$
\begin{aligned}
R & =A \cdot B+!A \cdot B \\
& =(A+!A) \cdot B \quad \text { Let's verify it with a truth-table } \\
& =B
\end{aligned}
$$

Note: often, the AND dot symbol (.) is omitted, but understood to be there (like with multiplication dot symbol)

- Simplify:

$$
\begin{aligned}
R & =!A B C D+A B C D+!A B!C D+A B!C D \\
& =B C D(A+!A)+!A B!C D+A B!C D \\
& =B C D+B!C D(!A+A) \\
& =B C D+B!C D \\
& =B D(C+!C) \quad \text { Let's verify it with a truth-table } \\
& =B D \quad \text { Matni, cs64, Fa18 }
\end{aligned}
$$

More Simplification Exercises

- Simplify: $R=!A!B C+!A!B!C+!A B C+!A B!C+A!B C$ $=!A!B(C+!C)+!A B(C+!C)+A!B C$ $=!A!B+!A B+A!B C$ $=!A(!B+B)+A!B C$ $=!A+A!B C$

You can verify it with a truth-table

- Reformulate using only AND and NOT logic:

$$
\begin{aligned}
R & =!A C+!B C \\
& =C(!A+!B) \quad \\
& =C .!(A \cdot B) \quad \leftarrow \text { De Morgan's Law }
\end{aligned}
$$

Important: Laws of Binary Logic

Circuit Equivalence - each law has 2 forms that are duals of each other.

Name	AND form	OR form
Identity law	$1 A=A$	$0+A=A$
Null law	$O A=0$	$1+A=1$
Idempotent law	$A A=A$	$A+A=A$
Inverse law	$A \bar{A}=0$	$A+\bar{A}=1$
Commutative law	$A B=B A$	$A+B=B+A$
Associative law	$(A B) C=A(B C)$	$(A+B)+C=A+(B+C)$
Distributive law	$A+B C=(A+B)(A+C)$	$A(B+C)=A B+A C$
Absorption law	$A(A+B)=A$	$A+A B=A$
De Morgan's law	$\overline{A B}=\bar{A}+\bar{B}$	$\overline{A+B}=\bar{A} \bar{B}$

Your To-Dos

- Review this material!
- Lab \#5 is due on Wednesday

