
Introduction	to	Digital	Logic	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#11	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

Administrative	
•  Lab	5	this	week	

•  You	can	review	your	midterm	with	a	TA	during	office	hours	
–  Last	name:		A	thru	L 	 	Bay-Yuan	Hsu 	F	11	am	–	1	pm	
–  Last	name:		M	thru	Z 	 	Shiyu	Ji 	 	 	F	3	pm	–	5	pm	
–  If	you	can’t	go	to	these	o/hs,	you	can	see	me	instead,	but	let	me	know	

well-ahead	of	time	first	so	I	can	get	your	exam	from	the	TA…	

•  When	reviewing	your	exams:	
–  Do	not	take	pictures,	do	not	copy	the	questions	
–  TA	cannot	change	your	grade	

•  If	you	have	a	legitimate	case	for	grade	change,	the	prof.	will	decide	
•  Legitimate	=	When	we	graded,	we	added	the	total	points	wrong	
•  Not	legitimate	=	Why	did	you	take	off	N	points	on	this	question????	

2/14/19	 Matni,	CS64,	Wi19	 2	

Lecture	Outline	

•  Intro	to	Binary	(Digital)	Logic	Gates	

•  Truth	Table	Construction	

•  Logic	Functions	and	their	Simplifications	

•  The	Laws	of	Binary	Logic	

2/14/19	 Matni,	CS64,	Fa18	 3	

Digital	i.e.	Binary	Logic	

•  Electronic	circuits	when	used	in	computers	are	a	
series	of	switches		

•  2	possible	states:	either	ON	(1)	and	OFF	(0)	

•  Perfect	for	binary	logic	representation!	

2/14/19	 Matni,	CS64,	Fa18	 4	

Basic	Building	Blocks	of	Digital	Logic	

•  Same	as	the	bitwise	operators:	
NOT	
AND	
OR	
XOR	
etc...	

•  We	often	refer	to	these	as	“logic	gates”	in	
digital	design	

2/14/19	 Matni,	CS64,	Fa18	 5	

Electronic	Circuit	Logic	Equivalents	

2/14/19	 6	

Graphical	Symbols	and	Truth	Tables	
NOT	

A	 A	or	!A	
0	 1	
1	 0	

2/14/19	 Matni,	CS64,	Fa18	 7	

Graphical	Symbols	and	Truth	Tables	
AND	and	NAND	

A	 B	 A	.	B	
0	 0	 0	
0	 1	 0	
1	 0	 0	
1	 1	 1	

2/14/19	 Matni,	CS64,	Fa18	 8	

A	 B	 A	.	B	or		
!(A.B)	

0	 0	 1	
0	 1	 1	
1	 0	 1	
1	 1	 0	

≡	

Graphical	Symbols	and	Truth	Tables	
OR	and	NOR	

A	 B	 A	+	B	
0	 0	 0	
0	 1	 1	
1	 0	 1	
1	 1	 1	

2/14/19	 Matni,	CS64,	Fa18	 9	

A	 B	 A	+	B	or		
!(A	+	B)	

0	 0	 1	
0	 1	 0	
1	 0	 0	
1	 1	 0	

≡	

Graphical	Symbols	and	Truth	Tables	
XOR	and	XNOR	

2/14/19	 Matni,	CS64,	Fa18	 10	

A	 B	 A	+	B	
0	 0	 0	
0	 1	 1	
1	 0	 1	
1	 1	 0	

A	+	B	
1	
0	
0	
1	

XNOR	

Q	

XOR	

Constructing	Truth	Tables	

•  T.Ts	can	be	applied	to	ANY	digital	circuit	

•  They	show	ALL	possible	inputs	with	ALL	
possible	outputs	

•  Number	of	entries	in	the	T.T.		

	 	 	=			2N,	where	N	is	the	number	of	inputs	

2/14/19	 Matni,	CS64,	Fa18	 11	

Example:	Constructing	the	T.T		
of	a	1-bit	Adder	

•  Recall	the	1-bit	adder:	

•  3	inputs:	I1	and	I2	and	CI	
–  Input1,	Input2,	and	Carry-In	
–  How	many	entries	in	the	T.T.	is	that?	

•  2	outputs:	R	and	CO	
–  Result,	and	Carry-Out	
–  You	can	have	multiple	outputs:	
each	will	still	depend	on	some		
combination	of	the	inputs	

2/14/19	 Matni,	CS64,	Fa18	 12	

EXAMPLE:	

1 	1	

0	

0	

1	

Example:	Constructing	the	T.T		
of	a	1-bit	Adder	

T.T	Construction	Time!	

2/14/19	 Matni,	CS64,	Fa18	 13	

Example:	Constructing	the	T.T		
of	a	1-bit	Adder	

#	 I1	 I2	 CI	 CO	 R	
0	 0	 0	 0	 0	 0	
1	 0	 0	 1	 0	 1	
2	 0	 1	 0	 0	 1	
3	 0	 1	 1	 1	 0	
4	 1	 0	 0	 0	 1	
5	 1	 0	 1	 1	 0	
6	 1	 1	 0	 1	 0	
7	 1	 1	 1	 1	 1	

2/14/19	 Matni,	CS64,	Fa18	 14	

INPUTS	 OUTPUTS	

Note	the	
order	of	the	
inputs!!!	

Logic	Functions	
•  An	output	function	F	can	be	seen	as	a	combination	of	1	or	

more	inputs	
•  Example:	

	 	F	=	A	.	B	+	C 	 	 	(all	single	bits)	
	
•  This	is	called	combinatorial	logic	
	
Equivalent	in	C/C++:	

	 	boolean	f	(boolean	a,	boolean	b,	boolean	c)		
	 	{	
	 	 	return	((a	&	b)	|	c);	
	 	}	

2/14/19	 Matni,	CS64,	Fa18	 15	

OR	and	AND	as	Sum	and	Product	
•  Logic	functions	are	often	expressed	with	basic	logic	building	

blocks,	like	ORs	and	ANDs	and	NOTs,	etc…	

•  OR	is	sometimes	referred	to	as	“logical	sum”	or	“logical	union”	
–  Partly	why	it’s	symbolized	as	“+”	
–  BUT	IT’S	NOT	THE	SAME	AS	NUMERICAL	ADDITION!!!!!!	

•  AND	as	“logical	product”	or	“logical	disjunction”	
–  Partly	why	it’s	symbolized	as	“.”	
–  BUT	IT’S	NOT	THE	SAME	AS	NUMERICAL	MULTIPLICATION!!!!!!	

2/14/19	 Matni,	CS64,	Fa18	 16	

Example	

•  A	XOR	B	takes	the	value	“1”		
(i.e.	is	TRUE)	if	and	only	if	
–  A	=	0,		B	=	1 		i.e.	!A.B	is	TRUE,			or	
–  A	=	1,		B	=	0 		i.e.	A.!B	is	TRUE	

•  In	other	words,	 	A	XOR	B	 	is	TRUE		
iff	(if	and	only	if) 	A!B	+	!AB	is	TRUE	

A	+	B	=	!A.B	+	A.!B	
Which	can	also	be	written	as:											A.B	+	A.B	

2/14/19	 Matni,	CS64,	Fa18	 17	

A	 B	 A	+	B	
0	 0	 0	
0	 1	 1	
1	 0	 1	
1	 1	 0	

Representing	the	Circuit	Graphically	

A	+	B	=	!A.B	+	A.!B	
												

Matni,	CS64,	Fa18	

A	 B	 A	+	B	
0	 0	 0	
0	 1	 1	
1	 0	 1	
1	 1	 0	

Q:	Does	it	take	any	time	for	a	
electronic	signal	to	go	thru	3	
“layers”	of	logic	gates?	

A:	Ideally,		NO,	it	all	happens	
simultaneously.	
In	reality,	OF	COURSE	it	takes	
time	(it’s	called	latency)	

A	

A	

B	

B	

A	+	B		

What	is	The	Logical	Function	for		
The	Half	Adder?	

#	 I1	 I2	 CO	 R	
0	 0	 0	 0	 0	
1	 0	 1	 0	 1	
2	 1	 0	 0	 1	
3	 1	 1	 1	 0	

2/14/19	 Matni,	CS64,	Fa18	 19	

INPUTS	 OUTPUTS	

CO	=	I1	.	I2	
R				=	I1	+	I2	

Half	Adder	
1-bit	adder	that	
does	not	have	a	
Carry-In	(Ci)	bit.	
	
This	logic	block	
has	only	2	1-bit	
inputs	and	2	1-bit	
outputs	

Our	attempt	to	describe	
the	outputs	as	functions	

of	the	inputs:	

What	is	The	Logical	Function	for		
A	Full	1-bit	adder?	

#	 I1	 I2	 CI	 CO	 R	
0	 0	 0	 0	 0	 0	
1	 0	 0	 1	 0	 1	
2	 0	 1	 0	 0	 1	
3	 0	 1	 1	 1	 0	
4	 1	 0	 0	 0	 1	
5	 1	 0	 1	 1	 0	
6	 1	 1	 0	 1	 0	
7	 1	 1	 1	 1	 1	

2/14/19	 Matni,	CS64,	Fa18	 20	

INPUTS	 OUTPUTS	

Ans.: 	 	CO	=	!I1.I2.CI	+	I1.!I2.CI	+	I1.I2.!CI	+	I1.I2.CI	
	 	 				R	=	!I1.!I2.CI	+	!I1.I2.!CI	+	I1.!I2.!CI	+	I1.I2.CI	

Minimization	of	Binary	Logic		
•  Why?	

–  It’s	MUCH	easier	to	read	and	understand…	
–  Saves	memory	(software)	and/or	physical	space	(hardware)	
–  Runs	faster	/	performs	better	

•  Why?...	remember	latency?	

•  For	example,	when	we	do	the	T.T.	for	(see	demo	on	
board):	
	 	X	=	A.B	+	A.!B	+	B.!A,	we	find	that	it	is	the	same	as	

	
(saved	ourselves	a	bunch	of	logic	gates!)	

2/14/19	 Matni,	CS64,	Fa18	 21	

A	+	B	

Using	T.Ts	vs.	Using	Logic	Rules	
•  In	an	effort	to	simplify	a	logic	function,	we	don’t	always	

have	to	use	T.Ts	–	we	can	use	logic	rules	instead	

Example:	What	are	the	following	logic	outcomes?	
A	.	A	
A	+	A	
	

A	.	1	
A	+	1	
	

A	.	0	
A	+	0	

2/14/19	 Matni,	CS64,	Fa18	 22	

A	
A	
	
A	
1	
	
0	
A	

Using	T.Ts	vs.	Using	Logic	Rules	
•  Binary	Logic	works	in	Associative	ways	
–  (A.B).C		 	is	the	same	as 	A.(B.C)	
–  (A+B)+C	 	is	the	same	as	 	A+(B+C)	

•  It	also	works	in	Distributive	ways	
–  (A	+	B).C 	is	the	same	as:		A.C	+	B.C	
–  (A	+	B).(A	+	C) 	is	the	same	as:		

				A.A	+	A.C	+	B.A	+	B.C	
	=	A	+	A.C	+	A.B					+	B.C	
	=	A	+	B.C	

2/14/19	 Matni,	CS64,	Fa18	 23	

More	Examples	of	Minimization	
a.k.a	Simplification	

•  Simplify: 	 	R	 	=	A.B	+	!A.B	
	 	 	 	 	 	=	(A	+	!A).B	
	 	 	 	 	 	=	B	

	
	
•  Simplify: 	 	R	 	=	!ABCD	+	ABCD	+	!AB!CD	+	AB!CD 	 	

	 	 	 														=	BCD(A	+	!A)	+	!AB!CD	+	AB!CD	
	 	 	 	 	 	=	BCD	+	B!CD(!A	+	A)	
	 	 	 	 	 	=	BCD	+	B!CD	
	 	 	 	 	 	=	BD(C	+	!C)	
	 	 	 	 	 	=	BD	

2/14/19	 Matni,	CS64,	Fa18	 24	

Let’s	verify	it	with	a	truth-table	

Let’s	verify	it	with	a	truth-table	

Note:	often,	the	AND	dot	symbol	(.)	is	omitted,	but	understood	
to	be	there	(like	with	multiplication	dot	symbol)	

More	Simplification	Exercises	

•  Simplify: 	R	 	=	!A!BC	+	!A!B!C	+	!ABC	+	!AB!C	+	A!BC	
	 	 	 	 	=	!A!B(C	+	!C)	+	!AB(C	+	!C)	+	A!BC	
	 	 	 	 	=	!A!B														+	!AB														+	A!BC	
	 	 	 	 	=	!A	(!B	+	B)																											+	A!BC	
	 	 	 	 	=	!A	+	A!BC	

	
•  Reformulate	using	only	AND	and	NOT	logic: 		

	 	 	 	R	 	=	!AC	+	!BC	
	 	 	 	 	=	C	(!A	+	!B)	
	 	 	 	 	=	C.	!(A.B) 	 	ß	De	Morgan’s	Law	

2/14/19	 Matni,	CS64,	Fa18	 25	

You	can	verify	it	with	a	truth-table	

Important:	Laws	of	Binary	Logic	

2/14/19	 Matni,	CS64,	Fa18	 26	

Your	To-Dos	

•  Review	this	material!	

•  Lab	#5	is	due	on	Wednesday	

2/14/19	 Matni,	CS64,	Fa18	 27	

2/14/19	 Matni,	CS64,	Wi19	 28	

