Introduction to Digital Logic

CS 64: Computer Organization and Design Logic
Lecture #11
Winter 2019

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

e Lab 5 this week

* You can review your midterm with a TA during office hours
— Last name: A thrul Bay-YuanHsu Fllam-1pm
— Last name: M thru Z Shiyu Ji F3pm-5pm

— If you can’t go to these o/hs, you can see me instead, but let me know
well-ahead of time first so | can get your exam from the TA...

 When reviewing your exams:
— Do not take pictures, do not copy the questions

— TA cannot change your grade
* If you have a legitimate case for grade change, the prof. will decide
* Legitimate = When we graded, we added the total points wrong
* Not legitimate = Why did you take off N points on this question????

2/14/19 Matni, CS64, Wil9

Lecture Outline

* |Intro to Binary (Digital) Logic Gates
* Truth Table Construction
* Logic Functions and their Simplifications

 The Laws of Binary Logic

2/14/19 Matni, CS64, Fal8

Digital i.e. Binary Logic

e Electronic circuits when used in computers are a
series of switches

e 2 possible states: either ON (1) and OFF (0)

battery switch battery switchK
light bulb light bulb |

e Perfect for binary logic representation!

2/14/19 Matni, CS64, Fal8

Basic Building Blocks of Digital Logic

 Same as the bitwise operators:
NOT
AND
OR
XOR
etc...

 We often refer to these as “logic gates” in
digital design

2/14/19 Matni, CS64, Fal8

Electronic Circuit Logic Equivalents

OR
BE ® Lamp-ON="1"

Lamp-0OFF = "0"
Switch A-Open ="0", Closed="1"
Switch B-Open = "0", Closed="1" A/ B/. N @
+
- Eg Lamp-0ON= "1
Lamp-0FF="0"

Switch A-QOpen = 0", Closed="1
Switch B-0pen = 0", Closed="1"

2/14/19

2/14

Graphical Symbols and Truth Tables
NOT

ARSpoR _O ml

1 0

/19 Matni, CS64, Fal8

Graphical Symbols and Truth Tables
AND and NAND

ﬂﬂm
5\19& 0
\ 1
0
1
A

2/14/19 Matni, CS64, Fal8

o

R O O O

IS

AND Q b"

0O 1
1 1
0O 1
1 O

Graphical Symbols and Truth Tables
OR and NOR

A . A B A+B

2/14/19 Matni, CS64, Fal8

Graphical Symbols and Truth Tables

XOR and XNOR
EIEI
O 0 O
e— 0 1 1 0
:I>—Q 1 01 0
1 10

¥

Constructing Truth Tables

 T.Ts can be applied to ANY digital circuit

* They show ALL possible inputs with ALL

possible outputs

e Number of entries in the T.T.

= 2N where N is the number of inputs

2/14/19 Matni, CS64, Fal8 11

Example: Constructing the T.T
of a 1-bit Adder
e Recall the 1-bit adder:

* 3inputs: I, and |, and C, EXAMPLE:
— Inputl, Input2, and Carry-In 1 1
B .. : -
How many entries in the T.T. is that: I, I,

* 2 outputs: R and C,
— Result, and Carry-Out

— You can have multiple outputs:
each will still depend on some
combination of the inputs

2/14/19 Matni, CS64, Fal8 12

2/14

/19

Example: Constructing the T.T
of a 1-bit Adder

T.T Construction Time!

Matni, CS64, Fal8

Example: Constructing the T.T
of a 1-bit Adder

NPUTS DUTPUTS

11 P Cl CO R

0 0 0 0 0 0

Note the 1 0 0 1 0 1
e I R
3 0 1 1 1 0

4 1 0 0 0 1

5 1 0 1 1 0

6 1 1 0 1 0

7 1 1 1 1 1

2/14/19 Matni, CS64, Fal8

Logic Functions

* An output function F can be seen as a combination of 1 or
more inputs

e Example:
F=A.B+C (all single bits)

* This is called combinatorial logic

Equivalent in C/C++:

boolean ¥ (boolean a, boolean b, boolean c)

{
return ((a & b) | ¢);

¥

2/14/19 Matni, CS64, Fal8

15

OR and AND as Sum and Product

* Logic functions are often expressed with basic logic building
blocks, like ORs and ANDs and NOTs, etc...

* OR is sometimes referred to as “logical sum” or “logical union”
— Partly why it’s symbolized as “+”

 AND as “logical product” or “logical disjunction”

o n

— Partly why it’s symbolized as “.

2/14/19 Matni, CS64, Fal8 16

Example

uﬂ * A XOR B takes the value “1”

(i.e. is TRUE) if and only if

O O O — A=0, B=1 i.e.!IA.BisTRUE, or

0O 1 1 — A=1, B=0 i.e. A.!IBis TRUE

1 01 * |In other words, AXORB is TRUE
1 10 iff (if and only if) AIB + IAB is TRUE

A+B=!A.B+A.!B

Which can also be written as: K B+ A.E

2/14/19 Matni, CS64, Fal8 17

Representing the Circuit Graphically
A B |A®DB A®B = IA.B +A.IB

O 0 O 4\
B
O 1 1 AND
1 0 1 A /
1 1 O OR A®B
A < >
AND
-
Q: Does it take any time for a < > A: Ideally, NO, it all happens

electronic signal to go thru 3 simul “_’” eously. _
“layers” of logic gates? In reality, OF COURSE it takes

time (it’s called latency)
Matni, CS64, Fal8

What is The Logical Function for
The Half Adder?

Half Adder
INPUTS OUTPUTS 1-bit adder that

does not have a
Carry-In (Ci) bit.

This logic block
has only 2 1-bit
inputs and 2 1-bit
outputs

W N R O
, B, O O
R O L O
m, O O O
O r L O

R

Our attempt to describe
€ co=1,.1,
the outputs as functions

of theinputs: R =1 + l,

2/14/19 Matni, CS64, Fal8 19

What is The Logical Function for
A Full 1-bit adder?

INPUTS OUTPUTS
Of O 0 0 0 0
1| O 0 1 0 1
2| O 1 0 0 1
3| O 1 1 1 0
41 1 0 0 0 1
5 1 0 1 1 0
6| 1 1 0 1 0
7|1 1 1 1 1 1

Ans.: CO = !11.12.Cl + 11.112.CI + 11.12.1CI + 11.12.Cl

R=11.12.Cl + 1.12.1CI + 11.112.1CI + 11.12.CI
2/14/19 Matni, CS64, Fa18

Minimization of Binary Logic

e Why?
— It’s MUCH easier to read and understand...
— Saves memory (software) and/or physical space (hardware)

— Runs faster / performs better
* Why?... remember latency?

 For example, when we do the T.T. for (see demo on
board):

X=A.B+A.IB +B.!A, we find that it is the same as

A+B
(saved ourselves a bunch of logic gates!)

2/14/19 Matni, CS64, Fal8

21

Using T.Ts vs. Using Logic Rules

* |n an effort to simplify a logic function, we don’t always
have to use T.Ts — we can use logic rules instead

Example: What are the following logic outcomes?

A.A A
A+A A
A.1 A
A+1 1
A.0O 0O

2/14/19 Matni, CS64, Fal8 22

Using T.Ts vs. Using Logic Rules

* Binary Logic works in Associative ways
— (A.B).C isthesameas A.(B.C)
— (A+B)+C is the same as A+(B+C)

* |t also works in Distributive ways
— (A +B).C is the same as: A.C+ B.C
— (A + B).(A + C) is the same as:
A.A+A.C+B.A+B.C
= + B.C
=A+B.C

2/14/19 Matni, CS64, Fal8

23

More Examples of Minimization
a.k.a Simplification

e Simplify: R =AB+!AB
= (A +!A).B Let’s verify it with a truth-table
=B

Note: often, the AND dot symbol (.) is omitted, but understood
to be there (like with multiplication dot symbol)

e Simplify: R =!ABCD + ABCD + !AB!CD + ABICD
= BCD(A + !A) + |AB!ICD + AB!CD
= BCD + BICD(!A + A)
= BCD + BICD
= BD(C + !C)

= BD Let’s verify it with a truth-table

2/14/19 Matni, CS64, Fal8 24

More Simplification Exercises

 Simplify: R =!AIBC+ IAIBIC+ |ABC + IAB!C + AIBC
= IAIB(C + IC) + |AB(C + !C) + AIBC

= IAIB + |AB + AIBC
= 1A (!B + B) + AIBC
=IA + AIBC

 Reformulate using only AND and NOT logic:
R =IAC+ IBC
=C(!A + IB)
=C. !(A.B) <& De Morgan’s Law

2/14/19 Matni, CS64, Fal8 25

Important: Laws of Binary Logic

_— . . .
Circuit Equivalence -each law has 2 forms that are duals of each other.

Name AND form OR form
Identity law 1A=A O+A=A
Null law OA=0 1+A=1
Idempotent law AA = A A+A=A
[Inverse law AA =0 A+A=1
Commutative law | AB = BA A+B=B+A

Associative law

(AB)C = A(BC)

(A+B)+C=A+(B+C)

Distributive law

A+ BC=(A+B)A +C)

A(B + C) = AB + AC

Absorption law

A(A + B) = A

A+AB=A

De Morgan's law

AB=A+B

A+B=AB

Your To-Dos

e Review this material!

* Lab #5 is due on Wednesday

2/14/19 Matni, CS64, Fal8

27

