Introduction to Digital Logic

CS 64: Computer Organization and Design Logic Lecture #11 Winter 2019

> Ziad Matni, Ph.D. Dept. of Computer Science, UCSB

Administrative

- Lab 5 this week
- You can review your midterm with a TA during office hours
 - Last name: A thru L Bay-Yuan Hsu F 11 am 1 pm
 - Last name: M thru Z Shiyu Ji F 3 pm 5 pm
 - If you can't go to these o/hs, you can see me instead, but let me know well-ahead of time first so I can get your exam from the TA...

• When reviewing your exams:

- Do not take pictures, do not copy the questions
- TA cannot change your grade
 - If you have a legitimate case for grade change, the prof. will decide
 - Legitimate = When we graded, we added the total points wrong
 - Not legitimate = Why did you take off *N* points on this question????

Lecture Outline

- Intro to Binary (Digital) Logic Gates
- Truth Table Construction
- Logic Functions and their Simplifications
- The Laws of Binary Logic

Digital i.e. Binary Logic

- Electronic circuits when used in computers are a series of switches
- 2 possible states: either ON (1) and OFF (0)

Perfect for binary logic representation!

Basic Building Blocks of Digital Logic

• Same as the bitwise operators:

NOT AND OR

XOR

etc...

 We often refer to these as "logic gates" in digital design

Electronic Circuit Logic Equivalents

Graphical Symbols and Truth Tables *NOT*

Α	A or !A
0	1
1	0

Graphical Symbols and Truth Tables *AND and NAND*

Graphical Symbols and Truth Tables *OR and NOR*

Practice Drawing the Symbol!

Α	Β	A + B
0	0	0
0	1	1
1	0	1
1	1	1
Α	B	A + B or !(A + B)
A 0	B 0	A + B or !(A + B) 1
A 0 0	B 0 1	A + B or !(A + B) 1 0
A 0 0 1	B 0 1 0	A + B or !(A + B) 1 0 0

A B OR Q NOT C E

A B NOR OQ

Graphical Symbols and Truth Tables XOR and XNOR

Practice Drawing the Symbol!

Α	B	A+B	A + B
0	0	0	1
0	1	1	0
1	0	1	0
1	1	0	1

2/14/19

Constructing Truth Tables

- T.Ts can be applied to ANY digital circuit
- They show ALL possible inputs with ALL possible outputs
- Number of entries in the T.T.
 - = 2^{N} , where N is the number of **inputs**

Example: Constructing the T.T of a 1-bit Adder

- Recall the 1-bit adder:
- **3 inputs**: I₁ and I₂ and C₁
 - Input1, Input2, and Carry-In
 - How many entries in the T.T. is that?
- 2 outputs: R and C_o
 - Result, and Carry-Out
 - You can have multiple outputs: each will still depend on some combination of the inputs

Example: Constructing the T.T of a 1-bit Adder

T.T Construction Time!

Example: Constructing the T.T of a 1-bit Adder

		INPUTS			OUTPUTS	
Ν	#	11	12	CI	CO	R
	0	0	0	0	0	0
Note the	1	0	0	1	0	1
order of the inputs!!!	2	0	1	0	0	1
	3	0	1	1	1	0
	4	1	0	0	0	1
	5	1	0	1	1	0
	6	1	1	0	1	0
	7	1	1	1	1	1

Logic Functions

- An output function F can be seen as a combination of 1 or more inputs
- Example:

 $F = A \cdot B + C$ (all single bits)

• This is called **combinatorial logic**

Equivalent in C/C++:

```
boolean f (boolean a, boolean b, boolean c)
{
    return ( (a & b) | c );
}
2/14/19
Matni, CS64, Fa18
```

OR and AND as Sum and Product

- Logic functions are often expressed with basic logic building blocks, like ORs and ANDs and NOTs, etc...
- OR is sometimes referred to as "logical sum" or "logical union"
 - Partly why it's symbolized as "+"
 - BUT IT'S NOT THE SAME AS NUMERICAL ADDITION!!!!!!
- AND as "logical product" or "logical disjunction"
 - Partly why it's symbolized as "."
 - <u>BUT IT'S NOT THE SAME AS NUMERICAL MULTIPLICATION!!!!!!</u>

Example

Α	B	A+B
0	0	0
0	1	1
1	0	1
1	1	0

A XOR B takes the value "1"
(i.e. is TRUE) *if and only if*- A = 0, B = 1 i.e. **!A.B** is TRUE, <u>or</u>
- A = 1, B = 0 i.e. **A.!B** is TRUE

In other words, **A XOR B** is TRUE **iff** (if and only if) **A!B + !AB** is TRUE

 $\mathbf{A} + \mathbf{B} = \mathbf{!A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{!B}$

Which can also be written as:

 $\overline{A}.B + A.\overline{B}$

Representing the Circuit Graphically

Matni, CS64, Fa18

What is The Logical Function for The Half Adder?

	IN	PUTS	Ουτ	PUTS
#	11	12	СО	R
0	0	0	0	0
1	0	1	0	1
2	1	0	0	1
3	1	1	1	0

Half Adder 1-bit adder that does not have a Carry-In (Ci) bit.

This logic block has only 2 1-bit inputs and 2 1-bit outputs

Our attempt to describe the outputs as functions of the inputs:

$$CO = I_1 \cdot I_2$$
$$R = I_1 + I_2$$

2/14/19

What is The Logical Function for A **Full** 1-bit adder?

_		INPUTS		OUTPUTS	
#	11	12	CI	CO	R
0	0	0	0	0	0
1	0	0	1	0	1
2	0	1	0	0	1
3	0	1	1	1	0
4	1	0	0	0	1
5	1	0	1	1	0
6	1	1	0	1	0
7	1	1	1	1	1

Ans.:

CO = !!1.!2.Cl + !1.!2.Cl + !1.!2.!Cl + !1.!2.Cl R = !!1.!!2.Cl + !!1.!2.!Cl + !1.!!2.!Cl + !1.!2.Cl

2/14/19

Matni, CS64, Fa18

Minimization of Binary Logic

- Why?
 - It's MUCH easier to read and understand...
 - Saves memory (software) and/or physical space (hardware)
 - Runs faster / performs better
 - Why?... remember *latency*?
- For example, when we do the T.T. for (see demo on board):

X = A.B + A.!B + B.!A, we find that it is the same as

A + B (saved ourselves a bunch of logic gates!)

Using T.Ts vs. Using Logic Rules

 In an effort to simplify a logic function, we don't always have to use T.Ts – we can use *logic rules* instead

Example: What are the following logic outcomes?

Using T.Ts vs. Using Logic Rules

- Binary Logic works in **Associative** ways
 - (A.B).C is the same as A.(B.C)
 - -(A+B)+C is the same as A+(B+C)
- It also works in **Distributive** ways
 - -(A + B).C is the same as: A.C + B.C
 - -(A + B).(A + C) is the same as:

A.A + A.C + B.A + B.C

= A + A.C + A.B + B.C

$$= A + B.C$$

More Examples of Minimization a.k.a Simplification

• Simplify: R = A.B + !A.B = (A + !A).B

= B

Let's verify it with a truth-table

Note: often, the AND dot symbol (.) is omitted, but understood to be there (like with multiplication dot symbol)

• Simplify: R = !ABCD + ABCD + !AB!CD + AB!CD = BCD(A + !A) + !AB!CD + AB!CD = BCD + B!CD(!A + A) = BCD + B!CD = BD(C + !C) = BDLet's verify it with a truth-table

More Simplification Exercises

- Simplify: R = |A|BC + |A|B|C + |ABC + |AB|C + A|BC
 - = !A!B(C + !C) + !AB(C + !C) + A!BC
 - = !A!B + !AB + A!BC
 - = !A (!B + B)
 - = !A + A!BC

You can verify it with a truth-table

+ A!BC

• Reformulate using **only** AND and NOT logic:

$$R = !AC + !BC$$

= C (!A + !B)
= C. !(A.B) \leftarrow De Morgan's Law

Important: Laws of Binary Logic

Circuit Equivalen	Ce - each law has 2 forms that are dual	s of each other.
Name	AND form	OR form
Identity law	1A = A	0 + A = A
Null law	0A = 0	1 + A = 1
Idempotent law	AA = A	A + A = A
Inverse law	AĀ = 0	A + Ā = 1
Commutative law	AB = BA	A + B = B + A
Associative law	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Distributive law	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Absorption law	A(A + B) = A	A + AB = A
De Morgan's law	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A + B} = \overline{A}\overline{B}$

Your To-Dos

- Review this material!
- Lab #5 is due on Wednesday

