Using the Stack with Functions
Intro to the MIPS Calling Convention

CS 64: Computer Organization and Design Logic
Lecture #9
Winter 2019

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

* No lab assighment for this week

* |ssue: getting feedback on your assighments

* Midterm has been graded!
— Grades will be posted on GauchoSpace very soon

— You can see your exams with your TAs and myself
starting next week

 Will announce on Piazza

2/7/19 Matni, CS64, Wil9 2

CS64, W19, Midterm Exam Grade Distrbution
Av.=86.0 Med. =87

69.00 74.00 79.00 84.00 89.00 94.00 98.00 98.00

2/7/19 Matni, CS64, Wil9 3

Commonly Seen Mistakes in Midterm

e Carry Out versus Overflow

* The use of masking and bit-shifting
— Example: oppositeOfBitN() question

 The use of lw/sw and the difference between
getting a value from memory and
getting an address from memory

* Programming style: unnecessary code

— Examples: creating a bunch of zero-valued regs, putting jumps
right before the default next line, forgetting jumps

2/7/19 Matni, CS64, Wil9

Lecture Outline

* Intro to the MIPS Calling Convention

e Using the stack in MIPS Assembly

2/8/19 Matni, CS64, Wil9

Any Questions From Last Lecture?

2/7/19 Matni, CS64, Wil9

RECALL: Simple Call Example

* See program: simple_call.asm

Calls a function (test) which immediately returns
.text

test: # return to whoever made the call

jr $ra Note: SPIM always
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ starts execution at the
main:< # do stuff.. line labeled “main”
# then call the test function
jal test

exit: # exit
1i $vo, 10
syscall

2/7/19 Matni, CS64, Wil9 7



Function Calls Within Functions...

Given what we’ve said so far... void foo () |
 What about this code makes our } par ()
previously discussed setup break? void bar() {
— You would need baz () ;
multiple copies of $ra }
void baz () {}

* You’d have to copy the value of $ra to another register
(or to mem) before calling another function

 Danger: You could run out of registers!

2/7/19 Matni, CS64, Wil9 8



Another Example...

What about this code void foo() {
makes this setup break? int a0, al, ..., a20;
bar () ;

e Can’t fit all variables in }

registers at the same void bar() f{
timel!l int a2l, a22, ..., a4o0;
}

e How do | know which
registers are even
usable without
looking at the code?

2/7/19 Matni, CS64, Wil9 9



Solution??!1

e Store certain information in memory only
at certain times

* Ultimately, this is where the call stack
comes from

* So what (registers/memory) save what???

2/7/19 Matni, CS64, Wil9 10



What Saves What?

* By MIPS convention, certain registers are designated to be
preserved across a call

* Preserved registers are saved by the
function called (e.g., SsO - Ss7)

— So these should be saved at the start of every function

* Non-preserved registers are saved by
the caller of the function (e.g., St0 - $t9)

— So these should be saved by the function’s caller

— Or not... (they can be ignored under certain circumstances)

2/7/19 Matni, CS64, Wil9 11



And Where is it Saved?

* Register values are saved on the stack
* The top of the stack is held in $sp (stackpointer)

 The stack grows
from high addresses to low addresses

2/7/19 Matni, CS64, Wil9

12



The Stack

When a program starts
executing, a certain
contiguous section of
memory is set aside for
the program called the
stack.

2/7/19

- NN M
stack limit
e ——
Garhage
stack pointer
—_—

bottom of stack
—_.,,

Matni, CS64, Wil9

Y

smaller
addresses

0x0010 0000

larger
addresses

13



The Stack

* The stack pointer is a
register ($sp) that
contains the top of
the stack.

 $sp contains the
smallest address x
such that any address
smaller than x is
considered garbage,
and any address
greater than or equal
to x is considered
valid.

2/7/19

) . /’\/\/\/’
stack limit ‘
__-n.-
smaller
addresses
Garhage
stack pointer
—~ 0x0010 0000
larger
addresses
bottom of stack
o Y
//\/\/\/\\

Matni, CS64, Wil9 14



The Stack

* In this example, $sp
contains the value stack limit
0x0000 1000.

° The Shaded region stack pointer
of the diagram
represents valid
parts of the stack.

bottom of stack
—_-.

2/7/19 Matni, CS64, Wil9

'//\V//A\»///\/

Garbage

i

smaller
addresses

0x0010 0000

Y

larger
addresses

15



The Stack

e Stack Bottom: The
largest valid address of
a stack.

e When a stack is
initialized, $sp points
to the stack bottom.

e Stack Limit: The
smallest valid address of
a stack.

o If $sp gets smaller than
this, then we get a
stack overflow error

2/7/19

- NN M
stack limit

e ——

Garhage

stack pointer

—_—
bottom of stack

e —— et

AN

Matni, CS64, Wil9

smaller
addresses

0x0010 0000

Y

larger
addresses

16



6
Pu

)
9
4
3
2

"y
4
3
2

5
Pus

"y
3
2

4
Pus

3
Pus

)

2
Pu

STACK (LIFO) PUSH AND POP
"
2

2/1]1Y



Stack Push and Pop

* To PUSH one or more registers

— Subtract 4 times the number
of registers to be pushed
on the stack pointer
o Why????
— Copy the registers to the stack (do a sw instruction)
Example:

addi $sp, $sp, -8 # 2 registers to save
sw $s0, 4($sp)
sw $s1, 0(%sp)

2/7/19 Matni, CS64, Wil19 18



* To POP one or more registers

2/7/19

Stack Push and Pop

— Reverse process from push

— Copy the data from the stack
to the registers (do a 1w instruction)

— Add 4 times the number of registers
to be popped on the stack.

Example:
lw $s0, 4($5p)
lw $s1, 0($sp)
addi $sp, $sp, 8 # 2 registers to restore
# Note: you cannot do the addi first

Matni, CS64, Wil19 19



save_registers.asm

* The program will look at 2 integers (a0, al) and ultimately
returns (a0 + a0) + (al + al) via a function call (i.e. jal)

e The function will first create room for 2 words on the stack
— It will push $s0 & $s1 onto the stack

— We'll use $s0 and $s1
b/c we want them to be preserved across a call

* It will calculate the returned value and put the result in

 We will then restore the original registers
— It will pop 2 words from the stack & place them in $s0 & $s1

2/7/19 Matni, CS64, Wil9 20



.data
solution text: .asciiz "Solution:

] save_registers.asm

saved_text: .asciiz "Saved: ”
newline: .asciiz "\n”
.text

# $a0: first integer
# $al: second integer
# Returns ($a0 + $a0) + ($al + $al) in $vo.
# Uses $s0 and $sl1 as part of this process because these are preserved across a call.
# add _ints must therefore save their values internally using the stack.
add_ints:
# save $s0 and $s1 on the stack (i.e. push)
addi $sp, $sp, -8 # make room for two words
sw $s0, 4(%$sp) # note the non-zero offset

sw $s1, 0(%$sp)

# calculate the value
add $s0, %$a0, $a0
add $s1, $a1, %ail
add $vo, $s0, $s1

# because $t0@ is assumed to not be preserved, we can modify it directly (and it will not
matter b/c we’ll pop the saved $t0 out of the stack later)
1i $to, 4242

# restore the registers and return (i.e. pop)
lw $s1, 0($sp)
1w $s0, 4($sp)
addi $sp, $sp, 8
jr $ra
Matni, CS64, Wi19 21



main: save registers.asm

# We “happen” to have the value 1 in $t@ and 2 in $s@ in this example

# $to and $s0@ are independent of the function..

1li $to, 1

1li $s0, 2

# We want to call add_ints. Because we want to save the value of $t@, in this case,

# and because it's not preserved across a call (we can’t assume it will be), it is our
# (the caller’s) responsibility to store it on the stack and restore it afterwards
addi $sp, $sp, -4

sw $t0, 0($sp) # saving $t0 is the caller’s responsibility, $s@ is the callee’s..

# setup the function call and make it
1i $a0, 3

1li $a1, 7

jal add_ints

# restore $t0 - also, we can “assume” that $s@ still has the value 2 in it
# because the CC says the function has to preserve $s registers

lw $t0, 0($sp)

addi $sp, $sp, 4

# print out the solution prompt # print out the solution itself
move $t1, $vo 1i $vo, 1

1i $ve, 4 move $a0, $ti

la $a@, solution_text syscall

syscall

# print out a newline and end (not shown)
la $a@, newline
1i $vo, 4
syscall
2/7/19 22



What is a Calling Convention?

* |t’s a protocol about how you call functions
and how you are supposed to return from them

* Every CPU architecture has one
— They can differ from one arch. to another

3 Reasons why we care:

— Because it makes programming a lot easier if everyone agrees to the
same consistent (i.e. reliable) methods

— Makes testing a whole lot easier
— | will ask you to use it in assighments and in exams!

* And you loose major points (or all of them) if you don’t...

2/7/19 Matni, CS64, Wil9 23



More on the “Why”

 Have a way of implementing functions in assembly
— But not a clear, easy-to-use way to do complex functions

* In MIPS, we do not have an inherent way of doing nested/recursive
functions

— Example: Saving an arbitrary amount of variables
— Example: Jumping back to a place in code recursively

 There js more than one way to do things
— But we often need a convention to set working parameters

— Helps facilitate things like testing and inter-compatibility
— This is partly why MIPS has different registers for different uses

2/7/19 Matni, CS64, Wil9 24



Instructions to Watch Out For

 jal <label> and jr $raalways go together

* Function arguments have to be stored ONLY in
$a0 thru $a3

* Function return values have to be stored ONLY in

e |f functions need additional registers whose values we don’t care about
keeping after the call, then they can use
$t0 thru $t9

* What about Ss registers? AKA the preserved registers

— We must save them... more on that...

2/7/19 Matni, CS64, Wil9 25



MIPS C.C. for CS64: Assumptions

* We will not utilize $fp and $gp regs
— Sfp: frame pointer
— Sgp: global pointer

* Assume that functions will not take more than 4 arguments
and will not return more than 2 arguments

— Makes our lives a little simpler...

 Assume that all values on the stack are always 32-bits

— That is, no overly long data types or complex data structures like
C-Structs, Classes, etc...

2/7/19 Matni, CS64, Wil9 26



The MIPS Convention In Its Essence

Preserved vs Regs
* Preserved: Ss0-Ss7, and Ssp, Sra
St0 - St9, Sa0-Sa3, and Sv0-Svil

* Values held in Preserved Regs immediately before a function call
MUST be the same immediately after the function returns.

e Values held in Unpreserved Regs must always be assumed to change
after a function call is performed.

— Sa0 - Sa3 are for passing arguments into a function
— SvO0 - Sv1 are for passing values from a function

2/7/19 Matni, CS64, Wil9 27



MIPS Call Stack

e We know what a Stack is...

e A “Call Stack” is used for storing the return addresses of the various
functions which have been called

 When you call a function (e.g. jal funcA), the address that we need to
return to is pushed into the call stack.

funcA does its thing... then...
The function needs to return.

So, the address is popped off the call stack

2/7/19 Matni, CS64, Wil9

28



void first() fourth:

{ jr $ra
third:
return; } push $ra
. o . jal fourth
¥01d second() S pop $ra
e jr $ra
third ()’ Top of the Stack —> o=
return; } Addr?ss of where | ¢acond:
third should h $
return to pushn sra
void third ( ) ~li.e. after “jal third”) Jal third
{ Address of where pop $ra
second should .
fourth ()’ return to Jr $ra
. (i.e. after “jal second”)
return; } first:

jal d
void forth() JaL secon

{ 1i $ve, 10
return; } Matni, CS64, Wi19 syscal



Why addiu?
Because there is

no such thing as
a negative
memory address
AND
we want to avoid
triggering a
processor-level

exception on
overflow

2/7/19

fourth:
jr $ra

third:

addiu $sp, $sp,
sw $ra, 0($sp)
jal fourth

Lw $ra, 0($sp)
addiu $sp, $sp,
jr $ra

second:
addiu $sp, $sp,
sw $ra, 0($sp)
jal third
lw $ra, @($sp)
addiu $sp, $sp,
jr $ra

first:
jal second

1i $vo, 10
syscall

fourth:
jr $ra

third:
push $ra
jal fourth
pop $ra
jr $ra

second:
push $ra
jal third
pop $%ra
jr $ra

first:
jal second

1i $vo, 10
syscal




Your To-Dos

 Read the MIPS Calling Convention PDF on the
class website!

2/7/19 Matni, CS64, Wil9

31






