
Using	the	Stack	with	Functions	
Intro	to	the	MIPS	Calling	Convention	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#9	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

Administrative	

•  No	lab	assignment	for	this	week	

•  Issue:	getting	feedback	on	your	assignments	

•  Midterm	has	been	graded!	
– Grades	will	be	posted	on	GauchoSpace	very	soon	
– You	can	see	your	exams	with	your	TAs	and	myself	
starting	next	week	
• Will	announce	on	Piazza	

2/7/19	 Matni,	CS64,	Wi19	 2	

2/7/19	 Matni,	CS64,	Wi19	 3	

Commonly	Seen	Mistakes	in	Midterm	

•  Carry	Out	versus	Overflow	

•  The	use	of	masking	and	bit-shifting	
–  Example:	oppositeOfBitN()	question	

•  The	use	of	lw/sw	and	the	difference	between		
getting	a	value	from	memory	and		
getting	an	address	from	memory	

•  Programming	style:	unnecessary	code	
–  Examples:	creating	a	bunch	of	zero-valued	regs,	putting	jumps	
right	before	the	default	next	line,	forgetting	jumps	

2/7/19	 Matni,	CS64,	Wi19	 4	

Lecture	Outline	

•  Intro	to	the	MIPS	Calling	Convention	

•  Using	the	stack	in	MIPS	Assembly	

2/8/19	 Matni,	CS64,	Wi19	 5	

Any	Questions	From	Last	Lecture?	

2/7/19	 Matni,	CS64,	Wi19	 6	

RECALL:	Simple	Call	Example	

•  See	program:	simple_call.asm	

2/7/19	 Matni,	CS64,	Wi19	 7	

#	Calls	a	function	(test)	which	immediately	returns	
.text	
test:		#	return	to	whoever	made	the	call	
					 	jr	$ra	
									
main: 	#	do	stuff…	

	 	#	then	call	the	test	function	
					 	jal	test	
	
exit:		#	exit	
							li	$v0,	10	
					 	syscall	

Note:	SPIM	always	
starts	execution	at	the	
line	labeled	“main”	

Function	Calls	Within	Functions…	

Given	what	we’ve	said	so	far…	
•  What	about	this	code	makes	our	
previously	discussed	setup	break?	
–  You	would	need		

	 	 	 	multiple	copies	of	$ra	

2/7/19	 Matni,	CS64,	Wi19	 8	

•  You’d	have	to	copy	the	value	of	$ra	to	another	register	
(or	to	mem)	before	calling	another	function	

•  Danger:	You	could	run	out	of	registers!	

Another	Example…	

What	about	this	code	
makes	this	setup	break?	
•  Can’t	fit	all	variables	in	
registers	at	the	same	
time!	

•  How	do	I	know	which		
registers	are	even		
usable	without		
looking	at	the	code?	

2/7/19	 Matni,	CS64,	Wi19	 9	

Solution??!!	

•  Store	certain	information	in	memory	only	
at	certain	times	

•  Ultimately,	this	is	where	the	call	stack	
comes	from	

•  So	what	(registers/memory)	save	what???	

2/7/19	 Matni,	CS64,	Wi19	 10	

What	Saves	What?	
•  By	MIPS	convention,	certain	registers	are	designated	to	be	

preserved	across	a	call	

•  Preserved	registers	are	saved	by	the		
	 	 	 	 	function	called	(e.g.,	$s0	-	$s7)	
–  So	these	should	be	saved	at	the	start	of	every	function	

•  Non-preserved	registers	are	saved	by		
	 	 	 	the	caller	of	the	function	(e.g.,	$t0	-	$t9)	
–  So	these	should	be	saved	by	the	function’s	caller	
–  Or	not…	(they	can	be	ignored	under	certain	circumstances)	

2/7/19	 Matni,	CS64,	Wi19	 11	

And	Where	is	it	Saved?	

•  Register	values	are	saved	on	the	stack	

•  The	top	of	the	stack	is	held	in	$sp	(stackpointer)	

•  The	stack	grows		
from	high	addresses	to	low	addresses	

2/7/19	 Matni,	CS64,	Wi19	 12	

The	Stack	

When	a	program	starts	
executing,	a	certain	
contiguous	section	of	
memory	is	set	aside	for	
the	program	called	the	
stack.	

2/7/19	 Matni,	CS64,	Wi19	 13	

The	Stack	
•  The	stack	pointer	is	a	

register	($sp)	that	
contains	the	top	of	
the	stack.	

•  $sp	contains	the	
smallest	address	x	
such	that	any	address	
smaller	than	x	is	
considered	garbage,	
and	any	address	
greater	than	or	equal	
to	x	is	considered	
valid.	

2/7/19	 Matni,	CS64,	Wi19	 14	

The	Stack	

•  In	this	example,	$sp	
contains	the	value	
0x0000	1000.	

•  The	shaded	region	
of	the	diagram	
represents	valid	
parts	of	the	stack.	

	

2/7/19	 Matni,	CS64,	Wi19	 15	

The	Stack	
•  Stack	Bottom:	The	

largest	valid	address	of	
a	stack.		

•  When	a	stack	is	
initialized,	$sp	points	
to	the	stack	bottom.	

•  Stack	Limit:	The	
smallest	valid	address	of	
a	stack.		

•  If	$sp	gets	smaller	than	
this,	then	we	get	a	
stack	overflow	error	

2/7/19	 Matni,	CS64,	Wi19	 16	

2/7/19	 Matni,	CS64,	Wi19	 17	

STACK	(LIFO)	PUSH	AND	POP	

Stack	Push	and	Pop	

•  To	PUSH	one	or	more	registers	
– Subtract		4	times	the	number		

	 	 	of	registers	to	be	pushed		
	 	 	on	the	stack	pointer	
• Why????	

– Copy	the	registers	to	the	stack	(do	a	sw	instruction)	
Example:	
addi	$sp,	$sp,	-8	#	2	registers	to	save	
sw	$s0,	4($sp)	
sw	$s1,	0($sp)	

	2/7/19	 Matni,	CS64,	Wi19	 18	

Stack	Push	and	Pop	

•  To	POP	one	or	more	registers	
–  Reverse	process	from	push	
–  Copy	the	data	from	the	stack		
to	the	registers	(do	a	lw	instruction)	

– Add	4	times	the	number	of	registers		
	 	 	 	 	 	to	be	popped	on	the	stack.		

Example:	
lw	$s0,	4($sp)	
lw	$s1,	0($sp)	
addi	$sp,	$sp,	8			#	2	registers	to	restore	
#	Note:	you	cannot	do	the	addi	first	
	

	
2/7/19	 Matni,	CS64,	Wi19	 19	

save_registers.asm	
•  The	program	will	look	at	2	integers	(a0,	a1)	and	ultimately	

returns	(a0	+	a0)	+	(a1	+	a1)	via	a	function	call	(i.e.	jal)	

•  The	function	will	first	create	room	for	2	words	on	the	stack	
–  It	will	push	$s0	&	$s1	onto	the	stack	
–  We’ll	use	$s0	and	$s1		

	 	 	 	 	b/c	we	want	them	to	be	preserved	across	a	call	

•  It	will	calculate	the	returned	value	and	put	the	result	in	$v0	

•  We	will	then	restore	the	original	registers	
–  It	will	pop	2	words	from	the	stack	&	place	them	in	$s0	&	$s1	

2/7/19	 Matni,	CS64,	Wi19	 20	

.data	
solution_text:	.asciiz	"Solution:	"	
saved_text:				.asciiz	"Saved:	”	
newline:							.asciiz	"\n”	
.text	
#	$a0:	first	integer	
#	$a1:	second	integer	
#	Returns	($a0	+	$a0)	+	($a1	+	$a1)	in	$v0.	
#	Uses	$s0	and	$s1	as	part	of	this	process	because	these	are	preserved	across	a	call.	
#	add_ints	must	therefore	save	their	values	internally	using	the	stack.	
add_ints:	
								#	save	$s0	and	$s1	on	the	stack	(i.e.	push)	
								addi	$sp,	$sp,	-8	#	make	room	for	two	words	
								sw	$s0,	4($sp)				#	note	the	non-zero	offset	
								sw	$s1,	0($sp)	
	
#	calculate	the	value	
								add	$s0,	$a0,	$a0	
								add	$s1,	$a1,	$a1	
								add	$v0,	$s0,	$s1	
	
#	because	$t0	is	assumed	to	not	be	preserved,	we	can	modify	it	directly	(and	it	will	not	
matter	b/c	we’ll	pop	the	saved	$t0	out	of	the	stack	later)	
								li	$t0,	4242	
									
#	restore	the	registers	and	return	(i.e.	pop)	
								lw	$s1,	0($sp)	
								lw	$s0,	4($sp)	
								addi	$sp,	$sp,	8	
								jr	$ra	

save_registers.asm	

Matni,	CS64,	Wi19	 21	

main:	
	#	We	“happen”	to	have	the	value	1	in	$t0	and	2	in	$s0	in	this	example	
	#	$t0	and	$s0	are	independent	of	the	function…	

					li	$t0,	1	
	li	$s0,	2	

					#	We	want	to	call	add_ints.	Because	we	want	to	save	the	value	of	$t0,	in	this	case,		
	#	and	because	it's	not	preserved	across	a	call	(we	can’t	assume	it	will	be),	it	is	our	
	#	(the	caller’s)	responsibility	to	store	it	on	the	stack	and	restore	it	afterwards	
	addi	$sp,	$sp,	-4	

					sw	$t0,	0($sp)	 		
	

	#	setup	the	function	call	and	make	it	
	li	$a0,	3	
	li	$a1,	7	
	jal	add_ints	

	
	#	restore	$t0	–	also,	we	can	“assume”	that	$s0	still	has	the	value	2	in	it	
	#	because	the	CC	says	the	function	has	to	preserve	$s	registers	
	lw	$t0,	0($sp)	
	addi	$sp,	$sp,	4	

	
	#	print	out	the	solution	prompt	
	move	$t1,	$v0	
	li	$v0,	4	
	la	$a0,	solution_text	
	syscall	

	
	
	
	

	#	print	out	the	solution	itself	
	li	$v0,	1	
	move	$a0,	$t1	
	syscall	

	
	#	print	out	a	newline	and	end	(not	shown)	
	la	$a0,	newline	
	li	$v0,	4	
	syscall	

save_registers.asm	

2/7/19	 22	

#	saving	$t0	is	the	caller’s	responsibility,	$s0	is	the	callee’s…	

What	is	a	Calling	Convention?	
•  It’s	a	protocol	about	how	you	call	functions		

	 	 	 	 	and	how	you	are	supposed	to	return	from	them	

•  Every	CPU	architecture	has	one	
–  They	can	differ	from	one	arch.	to	another	

•  3	Reasons	why	we	care:	
–  Because	it	makes	programming	a	lot	easier	if	everyone	agrees	to	the	

same	consistent	(i.e.	reliable)	methods	
–  Makes	testing	a	whole	lot	easier	
–  I	will	ask	you	to	use	it	in	assignments	and	in	exams!	

•  And	you	loose	major	points	(or	all	of	them)	if	you	don’t…	

2/7/19	 Matni,	CS64,	Wi19	 23	

More	on	the	“Why”	
•  Have	a	way	of	implementing	functions	in	assembly	

–  But	not	a	clear,	easy-to-use	way	to	do	complex	functions	

•  In	MIPS,	we	do	not	have	an	inherent	way	of	doing	nested/recursive	
functions	
–  Example:	Saving	an	arbitrary	amount	of	variables	
–  Example:	Jumping	back	to	a	place	in	code	recursively	

•  There	is	more	than	one	way	to	do	things	
–  But	we	often	need	a	convention	to	set	working	parameters	
–  Helps	facilitate	things	like	testing	and	inter-compatibility	
–  This	is	partly	why	MIPS	has	different	registers	for	different	uses	

2/7/19	 Matni,	CS64,	Wi19	 24	

Instructions	to	Watch	Out	For	
•  jal	<label>	and	jr	$ra	always	go	together	

•  Function	arguments	have	to	be	stored	ONLY	in	
$a0	thru	$a3	

•  Function	return	values	have	to	be	stored	ONLY	in		
$v0	and	$v1	

•  If	functions	need	additional	registers	whose	values	we	don’t	care	about	
keeping	after	the	call,	then	they	can	use		
$t0	thru	$t9		

•  What	about	$s	registers?	AKA	the	preserved	registers	
–  We	must	save	them…	more	on	that…	

2/7/19	 Matni,	CS64,	Wi19	 25	

MIPS	C.C.	for	CS64:	Assumptions	
•  We	will	not	utilize	$fp	and	$gp	regs	

–  $fp:	frame	pointer	
–  $gp:	global	pointer	

•  Assume	that	functions	will	not	take	more	than	4	arguments	
and	will	not	return	more	than	2	arguments	
–  Makes	our	lives	a	little	simpler…	

•  Assume	that	all	values	on	the	stack	are	always	32-bits	
–  That	is,	no	overly	long	data	types	or	complex	data	structures	like		

C-Structs,	Classes,	etc…	

2/7/19	 Matni,	CS64,	Wi19	 26	

The	MIPS	Convention	In	Its	Essence	
Preserved	vs	Unpreserved	Regs	

•  Preserved:	 	 	$s0	-	$s7,			and				$sp	,	$ra	
•  Unpreserved:	 	$t0	-	$t9,			$a0	-	$a3,			and				$v0	-	$v1	

•  Values	held	in	Preserved	Regs	immediately	before	a	function	call	
	 	MUST	be	the	same		 	immediately	after	the	function	returns.	

•  Values	held	in	Unpreserved	Regs	must	always	be	assumed	to	change	
after	a	function	call	is	performed.	
–  $a0	-	$a3	are	for	passing	arguments	into	a	function	
–  $v0	-	$v1	are	for	passing	values	from	a	function	

2/7/19	 Matni,	CS64,	Wi19	 27	

MIPS	Call	Stack	
•  We	know	what	a	Stack	is…	
•  A	“Call	Stack”	is	used	for	storing	the	return	addresses	of	the	various	

functions	which	have	been	called	

•  When	you	call	a	function	(e.g.	jal	funcA),	the	address	that	we	need	to	
return	to	is	pushed	into	the	call	stack.	

	…	
	funcA	does	its	thing…	then…	

	…	
	The	function	needs	to	return.	

		
So,	the	address	is	popped	off	the	call	stack	

2/7/19	 Matni,	CS64,	Wi19	 28	

MIPS	Call	Stack	

2/7/19	 Matni,	CS64,	Wi19	 29	

Top	of	the	Stack	
Address	of	where	
second	should	

return	to	
(i.e.	after	“jal	second”)	

fourth:	
		jr	$ra	
	
third:	
		push	$ra	
		jal	fourth	
		pop	$ra	
		jr	$ra	
	
second:	
		push	$ra	
		jal	third	
		pop	$ra	
		jr	$ra	
	
first:	
		jal	second	
	
li	$v0,	10	
syscal	

Address	of	where	
second	should	

return	to	
(i.e.	after	“jal	second”)	

Address	of	where		
third	should	
return	to	

(i.e.	after	“jal	third”)	

void	first()	
{	
	second()	
	return;	}	

	
void	second()	
{	
	third	();	
	return;	}	

	
void	third()	
{	
	fourth	();	
	return;	}	

	
void	forth()	
{	
	return;	}	

PU
SH	

PO
P	

2/7/19	 Matni,	CS64,	Wi19	 30	

fourth:	
		jr	$ra	
	
third:	
		addiu	$sp,	$sp,	-4	
		sw	$ra,	0($sp)	
		jal	fourth	
		lw	$ra,	0($sp)	
		addiu	$sp,	$sp,	4	
		jr	$ra	
	
second:	
		addiu	$sp,	$sp,	-4	
		sw	$ra,	0($sp)	
		jal	third	
		lw	$ra,	0($sp)	
		addiu	$sp,	$sp,	4	
		jr	$ra	
	
first:	
		jal	second	
	
li	$v0,	10	
		syscall	

fourth:	
		jr	$ra	
	
third:	
		push	$ra	
		jal	fourth	
		pop	$ra	
		jr	$ra	
	
	
	
second:	
		push	$ra	
		jal	third	
		pop	$ra	
		jr	$ra	
	
	
	
first:	
		jal	second	
	
li	$v0,	10	
syscal	

Why	addiu?	
Because	there	is	
no	such	thing	as	

a	negative	
memory	address	

AND		
we	want	to	avoid	

triggering	a	
processor-level	
exception	on	
overflow	

Your	To-Dos	

•  Read	the	MIPS	Calling	Convention	PDF	on	the	
class	website!	

2/7/19	 Matni,	CS64,	Wi19	 31	

2/7/19	 Matni,	CS64,	Wi19	 32	

