
MIPS	Instructions	
Overview	of	Functions	in	MIPS	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#8	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

Administrative	

•  Lab	4	due	Monday,	Feb.	4th		

•  Midterm	Exam	on	Tuesday,	Feb.	5th	

1/31/19	 Matni,	CS64,	Wi19	 2	

What’s	on	the	Midterm?	
What’s	on	It?	
•  Everything	we’ve	done	so	far	from	start	to	end	of	this	week	

What	Should	I	Bring?	
•  Your	pencil(s),	eraser,	MIPS	Ref.	Card	
•  THAT’S	ALL!	

What	Else	Should	I	Do?	
•  Come	to	the	classroom	5-10	minutes	EARLY	
•  I	will	have	some	of	you	re-seated	
•  Bring	your	UCSB	ID	

1/31/19	 Matni,	CS64,	Wi19	 3	

Lecture	Outline	

•  MIPS	Instructions	
– How	they	are	represented	

•  Overview	of	Functions	in	MIPS	

1/31/19	 Matni,	CS64,	Wi19	 4	

Any	Questions	From	Last	Lecture?	

1/31/19	 Matni,	CS64,	Wi19	 5	

MIPS	Reference	Card	

•  Let’s	take	a	closer	look	at	that	card…	

•  Found	as	PDF	on	class	website	

1/31/19	 Matni,	CS64,	Wi19	 6	

1/31/19	 Matni,	CS64,	Wi19	 7	

NOTE	THE	FOLLOWING:	
	
1.  Instruction	Format	Types:		

R	vs	I	vs	J	

2.  OPCODE/FUNCT	(Hex)	

3.  Instruction	formats:	
Where	the	actual	bits	go	

1/31/19	 Matni,	CS64,	Wi19	 8	

NOTE	THE	FOLLOWING:	
	
1.  Pseudo-Instructions	
•  There	are	more	of	

these,	but	in	CS64,	you	
are	ONLY	allowed	to	
use	these	+	la	
	

2.  Registers	and	their	
numbers	

3.  Registers	and	their	
uses	

4.  Registers	and	their	
calling	convention	
•  A	LOT	more	on	that	

later…	

1/31/19	 Matni,	CS64,	Wi19	 9	

NOTE	THE	FOLLOWING:	
	
1.  This	is	only	part	of	

the	2nd	page	that	you	
need	to	know	

Instruction	Representation	
Recall:	A	MIPS	instruction	has	32	bits	
32	bits	are	divided	up	into	6	fields	(aka	the	R-Type	format)	
•  op	code 	6	bits 	 	basic	operation	
•  rs	code 	5	bits 	 	first	register	source	operand	
•  rt	code 	5	bits 	 	second	register	source	operand	
•  rd	code 	5	bits 	 	register	destination	operand	
•  shamt	code 	5	bits 	 	shift	amount	
•  funct	code 	6	bits 	 	function	code	

1/31/19	 Matni,	CS64,	Wi19	 10	

op	
6	b	

31	–	26	

funct	
6	b	
5	–	0	

rs	
5	b	

25	–	21		

rt	
5	b	

20	–	16		

rd	
5	b	

15	–	11		

shamt	
5	b	
10	–	6	

Why	did	the	
designers	allocate	
5	bits	for	registers?	

Instruction	Representation	in	R-Type	

•  The	combination	of	the	opcode	and	the	funct	code	tell	the	
processor	what	it	is	supposed	to	be	doing	

•  Example:	
add	$t0,	$s1,	$s2	

	
	
op	=	0,	funct	=	32	 	mean	“add”	
rs	=	17	 	means	“$s1”	
rt	=	18	 	means	“$s2”	
rd	=	8 	means	“$t0”	
shamt	=	0	 	means	this	field	is	unused	in	this	instruction	
	

1/31/19	 Matni,	CS64,	Wi19	 11	

op	
0	

funct	
32	

rs	
17	

rt	
18	

rd	
8	

shamt	
0	

A	full	list	of	codes	can	be	
found	in	your	

	MIPS	Reference	Card	

Exercises	

•  Using	your	MIPS	Reference	Card,	write	the	32	bit	
instruction	(using	the	R-Type	format	and	decimal	
numbers	for	all	the	fields)	for	the	following:	

	
add	$t3,	$t2,	$s0 		
addu	$a0,	$a3,	$t0	
sub	$t1,	$t1,	$t2	
	

1/31/19	 Matni,	CS64,	Wi19	 12	

0x01505820	
0x00E82021	
0x012A4822	

Exercise:	Example	Run-Through	

•  Using	your	MIPS	Reference	Card,	write	the	32	bit	
instruction	(using	the	R-Type	format)	for	the	
following.	Express	your	final	answer	in	hexadecimal.	

	
add	$t3,	$t2,	$s0 	 	 		
	

1/31/19	 Matni,	CS64,	Wi18	 13	

op	(6b)	
0	

funct	(6b)	
32	

rs	(5b)	
10	

rt	(5b)	
16	

rd	(5b)	
11	

shamt	(5b)	
0	

000000 				0	1010				1	0000				0	1011							0	0000			 	 	10	0000	
00000001010100000101100000100000	

0x01505820	

0x01505820	

Instruction	Representation	

•  The	R-Type	format	is	used	for	many,		
	 	 	 	 	 	 	 	but	not	all	instructions	
– Why?	

	 	Hint:	how	many	registers	are	there?	How	bits	represent	a	register	in	R-Type	format?	

•  What	if	you	wanted	to	load/save	from/to	memory?	
– Why	is	this	problematic	with	R-Type	format?		

1/31/19	 Matni,	CS64,	Wi19	 14	

A	Second	Type	of	Format…	
32	bits	are	divided	up	into	4	fields	(the	I-Type	format)	
•  op	code 	6	bits 	 	basic	operation	
•  rs	code 	5	bits 	 	first	register	source	operand	
•  rt	code 	5	bits 	 	second	register	source	operand	
•  address	code 	16	bits	 	constant	or	memory	address	
	
Note:	The	I-Type	format	uses	the	address	field	to	access	±215	
addresses	from	whatever	value	is	in	the	rs	field	

1/31/19	 Matni,	CS64,	Wi19	 15	

op	
6	b	

31	–	26	

rs	
5	b	

25	–	21		

rt	
5	b	

20	–	16		

address	
16	b	
15	–	0	

Ans:	215	-	1	

I-Type	Format	

•  The	I-Type	address	field	is	a	
signed	number	

•  The	addi	instruction	is	an		
I-Type,	example:	

addi	$t0,	$t1,	42	
– What	is	the	largest,	most	positive,	
number	you	can	put	as	an	
immediate?	

1/31/19	 Matni,	CS64,	Wi19	 16	

Instruction	Representation	in	I-Type	

•  Example:	
addi	$t0,	$s0,	124	

	
	
op	=	8	 	mean	“addi”	
rs	=	16 	means	“$s0”	
rt	=	8 	means	“$t0”	
address/const	=	124 	is	the	immediate	value	
	

1/31/19	 Matni,	CS64,	Wi19	 17	

op	
8	

address/const	
124	

rs	
16	

rt	
8	

A	full	list	of	codes	can	be	
found	in	your		

MIPS	Reference	Card	

Exercises	

•  Using	your	MIPS	Reference	Card,	write	the	32	bit	
instruction	(using	the	I-Type	format	and	decimal	
numbers	for	all	the	fields)	for	the	following:	

	
addi	$t3,	$t2,	-42	
andi	$a0,	$a3,	1	
slti	$t8,	$t8,	14	

1/31/19	 Matni,	CS64,	Wi19	 18	

0x214BFFD6	
0x30E40001	
0x2B18000E	

Functions	
•  Up	until	this	point,	we	have	not	discussed	functions	

•  Why	not?	
–  If	you	want	to	do	functions,	you	need	to	use	the	stack	
–  Memory	management	is	a	must	for	the	call	stack	...	

	 	 	though	we	can	make	some	progress	without	it	

•  Think	of	recursion…	
–  How	many	variables	are	we	going	to	need	ahead	of	time?	
–  What	memory	do	we	end	up	using	in	recursive	functions?	
–  We	don’t	always	know…	

1/31/19	 Matni,	CS64,	Wi19	 19	

Implementing	Functions	

What	capabilities	do	we	need	for	functions?	
1.  Ability	to	execute	code	elsewhere	
–  Branches	and	jumps	

2.  Way	to	pass	arguments	in	and	out	of	the	func.	
–  There	a	way	(aka	convention)	to	do	that	that	we’ll	learn	
about		

– We’ll	use	the	registers	to	do	function	I/O	

1/31/19	 Matni,	CS64,	Wi19	 20	

Jumping	to	Code	

•  We	have	ways	to		
jump	unconditionally	
to	code	(j	instruction)	

•  But	what	about	jumping	back? 		
–  That	is,	after	you’re	done	with	a	function?	
–  We’ll	need	a	way	to	save	where	we	were	(so	we	can	“jump”	back)	

•  Q:	What	do	need	so	that	we	can	do	this	on	MIPS?	
–  A:	A	way	to	store	the	program	counter	($PC)	multiple	times 		
(to	tell	us	where	the	next	instruction	is	so	that	we	know	where	to	return!)	

1/31/19	 Matni,	CS64,	Wi19	 21	

Calling	Functions	on	MIPS	

•  Two	crucial	instructions:	jal	and	jr	
•  One	specialized	register:	$ra	

•  jal	(jump-and-link)		
–  Simultaneously	jump	to	an	address,	and	store	the	location	
of	the	next	instruction	in	register	$ra	

•  jr	(jump-register)		
–  Jump	to	the	address	stored	in	a	register,	often	$ra	

1/31/19	 Matni,	CS64,	Wi19	 22	

Simple	Call	Example	

•  See	program:	simple_call.asm	

1/31/19	 Matni,	CS64,	Wi19	 23	

#	Calls	a	function	(test)	which	immediately	returns	
.text	
test:		#	return	to	whoever	made	the	call	
					 	jr	$ra	
									
main: 	#	do	stuff…	

	 	#	then	call	the	test	function	
					 	jal	test	
	
exit:		#	exit	
							li	$v0,	10	
					 	syscall	

Note:	SPIM	always	
starts	execution	at	the	
line	labeled	“main”	

Passing	and	Returning	Values	

•  We	want	to	be	able	to	call	arbitrary	functions	
without	knowing	the	implementation	details	

•  So,	we	need	to	know	our	pre-/post-conditions	

•  Q:	How	might	we	achieve	this	in	MIPS?	
– A:	We	designate	specific	registers		

	 	 	 	for	arguments	and	return	values	

1/31/19	 Matni,	CS64,	Wi19	 24	

Passing	and	Returning	Values	in	MIPS	

•  Registers	$a0	thru		$a3	
– Argument	registers,	for	passing	function	arguments	

•  Registers	$v0	and		$v1	
– Return	registers,	for	passing	return	values	

•  What	if	we	want	to	pass	>4	args?	
– There	are	ways	around	that…		

	 	 	but	we	won’t	discuss	them	in	CS64…!	

1/31/19	 Matni,	CS64,	Wi19	 25	

YOUR	TO-DOs	

•  Review	ALL	the	demo	codes		
– Available	via	the	class	website	

•  Study	for	Midterm	Exam	
– Review	Practice	Exam	

•  Remember:	Midterm	next	week!!!	

1/31/19	 Matni,	CS64,	Wi19	 26	

1/31/19	 Matni,	CS64,	Wi19	 27	

