MIPS Instructions
Overview of Functions in MIPS

CS 64: Computer Organization and Design Logic
Lecture #8
Winter 2019

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

Administrative

* Lab 4 due Monday, Feb. 4t

e Midterm Exam on Tuesday, Feb. 5t

1/31/19 Matni, CS64, Wil9

What’s on the Midterm?

What’s on It?
 Everything we’ve done so far from start to end of this week

What Should | Bring?
* Your pencil(s), eraser, MIPS Ref. Card
e THAT'S ALL!

What Else Should | Do?
e Come to the classroom 5-10 minutes EARLY

* | will have some of you re-seated
* Bring your UCSB ID

1/31/19 Matni, CS64, Wil19 3

Lecture Outline

* MIPS Instructions
— How they are represented

e Qverview of Functions in MIPS

1/31/19 Matni, CS64, Wil9

Any Questions From Last Lecture?

1/31/19 Matni, CS64, Wil9

MIPS Reference Card

e Let’s take a closer look at that card...

* Found as PDF on class website

1/31/19 Matni, CS64, Wil9

CORE INSTRUCTION SET
FOR-

NAME, MNEMONIC

Add

Add Immediate
Add Imm. Unsigned
Add Unsigned

And

And Immediate

Branch On Equal

add
addi
addiu
addu
and

andi

beg

Branch On Not Equalbne

Jump

Jump And Link

Jump Register

Load Byte Unsigned

Load Halfword
Unsigned

Load Linked

Load Upper Imm.

Load Word

Nor

Or

Or Immediate

Set Less Than

Set Less Than Imm.

Set Less Than Imm.
Unsigned

Set Less Than Unsig.
Shift Left Logical
Shift Right Logical

Store Byte
Store Conditional

Store Halfword

Store Word
Subtract
Subtract Unsigned

3
jal
jr

1bu

lhu

11
lus
1w

nor

slt

slel
sltiu

sltu
sll

srl

sb
sc

sh

sw
sub

subu

MAT

R
I
I

R

R
I

I

o

OPERATION (in Verilog)
R[rd] = R[rs] + R[rt] (1)
R[rt] = R[rs] + SignExtImm (1.2)
R[rt] = R[rs] + SignExtImm (2)
R[rd] = R[rs] + R[rt]
R[rd] = R[rs] & R[rt]
R[rt] = R[rs] & ZeroExtImm (3)
if(R[rs]==R]rt])
PC=PC+4+BranchAddr (4)
if(R[rs]'=R[rt])
PC=PC+4+BranchAddr (4)
PC=JumpAddr (5)
R[31J=PC+8:PC=JumpAddr (5)
PC=R[rs]
R[rt]={24’bO.M[R[rs]
+SignExtimm}(7:0)} (2)
R[rt]={ 16'b0,M[R][rs]
+SignExtimm](15:0)} (2)
R[rt] = M[R[rs+SignExtImm] (2,7)
R[rt] = {imm, 16’b0}
R[rt] = M[R[rs]+SignExtImm] (2)
R[rd] =~ (R[rs] | R[11])
R{rd] = R[rs] | R[rt]
R[rt] = R[rs] | ZeroExtImm (3)

R[rd] = (R[rs] <R[n])? 1 : 0
R[rt] = (R[rs] < SignExtImm)? 1 : 0 (2)
R[rt] = (R[rs] < SignExtImm)

271:0 (2,6)
R[rd] =(R[rs] <R[nt])? 1:0 (6)
R[rd] = R[rt] << shamt
R[rd] = R[rt] >> shamt
M[R[rsHSignExtlmm](7:0) =
R[rt](7:0) (2)
M[R[rsHSignExtImm] = R[rt];
R[rt] = (atomic)? 1 : 0 (2,7)
M[R[rsHSignExtlmm](15:0) =
R[rt](15:0) (2)
M[R[rsHSignExtImm] = R[rt] (2)
R{rd] = R[rs] - R[rt] (1)

R[rd] = R[rs] - R[r1]

OPCODE
/FUNCT

(Hex)
0/ 20,

NOTE THE FOLLOWING:

Shcx

ghcx
021,
0/24,,,

Chex

4hl.'.\

1. Instruction Format Types:
Rvslvsl

Shux

2hu1
3hux
0/ 08,

24hc.\

2. OPCODE/FUNCT (Hex)

BASIC INSTRUCTION FORMATS
R I opcode l s l rt I
31 5 2120 16 15
I l opcode] s [t I immediate I
31 25 2120 16 15 0
J I opcode l address I
3l 26 25 0

Zshcx

30bcx

&cx
5

0/ 2Tpex
0/ 25hex
d‘hl.'.\

0/ 2apx

rd l shamt l

11 10

54
174

65 0

¥
[

b

3. Instruction formats:
Where the actual bits go

Ahex
h'n!.\
0/ 2by,,
0/ 00,
0702,

Zshcx
3Shcx

29hcs

thc.\
0/22,

0123, ni, CS64, Wil19 7

PSEUDOINSTRUCTION SET NOTE THE FOLLOWING:

NAME MNEMONIC OPERATION

Branch Less Than blt ifiR[rs]<R[rt]) PC = Label

Branch Greater Than bgt ifi R[rs]>R][rt]) PC = Label .
Branch Less Than or Equal ble ifiR[rs]<=R[rt]) PC = Label 1. Pseudo-Instructions
Branch Greater Than or Equal bge ifiR[rs]>=R[rt]) PC = Label

Load Immediate 14 R[rd] = immediate * There are more of
Move move R[rd] = R[rs]

these, but in CS64, you
are ONLY allowed to
use these + la

REGISTER NAME, NUMBER, USE, CALL CONVENTION

Szero 0 The Constant Value 0 N.A. num be rs
Sat 1 Assembler Temporary No
SvO-Svl 2.3 Values for F!mcmm Rcs'ulls No
and Expression Evaluation . .
S0ST AT Arguments o 3. Registers and their
$t0-St7 8-15 Temporaries No
Ss0-Ss7 16-23 Saved Temporaries Yes USES
St8-S19 24-25 Temporaries No
SkO-Skl 26-27 Reserved for OS Kemel No
Sep 28 Global Pointer Ves 4. Registers and their
Ssp 29 Stack Pointer Yes . .
30 30 Frame Pointer Ves calling convention
Sre 31 Retum Address N
- - = - * ALOT more on that

later...
1/31/19 Matni, CS64, Wi19 8

MEMORY ALLOCATION

Ssp —P 7MY fifcy,,,

$p 91000 8000,

pe 0040 0000,

Stack

Dyn:u'Iic Data

1000 0000,

Static Data

Text

Ohyex

Reserved

DATA ALIGNMENT

STACK FRAME

Argument 6

Argument 5

St —p

Saved Registers

Local Variables

Higher
Memory
Addresses

Stack
Grows

|

Lower
Memory
Addresses

Double Word

Word

Word

Halfword

Halfword

Halfword

Halfword

Byte | Byte

Byte

Byte

Byte

Byte

Byte

Byte

0

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

| 2
Value of three

3

3 B 5 6 7
least significant bits of byte address (Big Endian)

PRE-

SIZE FIX

SIZE

PRE-
FIX

SIZE

PRE-
FIX

SIZE

PRE-
FIX

10°,2'% Kilo-

10'5 20

Peta-

107

milli-

10713

femto-

10°,2%" Mega-

108 260

Exa-

107

micro-

10718

atto-

10°,2° Giga-

3
lo-l. 270

Zetta-

10

nano-

1072}

zeplo-

1012, 2% Tera-

1024 280

Yotta-

10712

pico-

10724

yocto-

The symbol for each prefix 1s just its first letter, except {18 used for micro.

1/31/19

Matni, CS64, Wil9

NOTE THE FOLLOWING:

1. This is only part of
the 2"d page that you
need to know

Instruction Representation

Recall: A MIPS instruction has 32 bits
32 bits are divided up into 6 fields (aka the R-Type format)

op code

rs code

rt code

rd code

shamt code

funct code
op

6b
31-26

1/31/19

6 bits
5 bits
5 bits
5 bits
5 bits
6 bits

rs
5b

| 25-21

basic operation

first register source operand
second register source operand
register destination operand

shift amount Why did the
designers allocate
function code 5 bits for registers?
rt rd shamt | funct
5b 5b 5b 6b
20—16 | 15-11 10-6 | 5-0

Matni, CS64, Wil9 10

Instruction Representation in R-Type

op rs rt rd shamt funct
6b 5b 5b 5b 5b 6b
31-26 = 25-21 20-16 @ 15-11 10-6 5-0

 The combination of the opcode and the funct code tell the
processor what it is supposed to be doing

e Example:
add $t0, $s1, $s2
op rs rt rd shamt | funct
0 17 18 8 0 32
op =0, funct =32 mean “add” :

3 P) A full list of codes can be
rs=17 means “Ss1 found in your
rt=18 means “Ss2” MIPS Reference Card
rd=8 means “St0”
shamt =0 means this field is unused in this instruction

1/31/19 Matni, CS64, Wil9 11

Exercises

e Using your MIPS Reference Card, write the 32 bit
instruction (using the R-Type format and decimal
numbers for all the fields) for the following:

add $t3, $t2, $s0 0x01505820
addu $a0, %$a3, $to OX00E82021
sub $t1, $t1, $t2 OxX012A4822

1/31/19 Matni, CS64, Wil9 12

Exercise: Example Run-Through

e Using your MIPS Reference Card, write the 32 bit
instruction (using the R-Type format) for the
following. Express your final answer in hexadecimal.

add $t3, $t2, $s0 Px01505820

- op (6b) | rs(5b) | rt(5b) rd(5b) shamt(5b)| funct (6b)
0 10 16 11 0 32
000000 01010 10000 01011 00000 10 0000

000000010101 0101 0010
VR 0x01505820

Instruction Representation

op rs rt rd shamt funct
6b 5b 5b 5b S5b 6b
31-26 25-21 20-16 15-11 10-6 5-0

* The R-Type format is used for many,
but not all instructions

— Why?

Hint: how many registers are there? How bits represent a register in R-Type format?

 What if you wanted to load/save from/to memory?
— Why is this problematic with R-Type format?

1/31/19 Matni, CS64, Wil9 14

A Second Type of Format...

32 bits are divided up into 4 fields (the I-Type format)

e op code 6 bits basic operation
* rscode 5 bits first register source operand
* rtcode 5 bits second register source operand

 address code 16 bits constant or memory address

Note: The |-Type format uses the address field to access +21°
addresses from whatever value is in the rs field

op rs rt address

6b 5b 5b 16 b
31-26 | 25-21 | 20-16 15-0

1/31/19 Matni, CS64, Wil9

15

I-Type Format

op address I
6b 5b 5b 16 b
31-26 25-21 20-16 15-0
° he |- I I CORE INSTRUCTION SET | LoadUpperlmm. 1ui I
The I-Type address field is a Tl et
. NAME, MNEMONIC ~ MAT| Nor mor R
sighed number Add wi R| o - R
Add Immediate addi I Or Immediate ori I
Add Imm. Unsigned addiu I Set Less Than slt R
Add Unsigned addu R Set Less Than Imm. slti [
. And and R Set Less Than Imm. a1
L] L] L] . . U . d -

 The addi instruction is an Audlomediss avai 1| Uesiged S
. Rxanch O Houel peq I Shift Left Logical s11 R
I _Ty p el exa m p I e . Branch On Not Equal bne I Shift Right Logical sxl R
. Jump 3 J Store Byte sb I
a d d 1 $ t @ J $ t 1 J 4 2 Jump And Link Jal ! Store Conditional sc I

Jump Register jr R
— What is the largest, most positive, wadsyevnsignea . 1| SoreHalfvord —en
Load Halfword Store Word sw I
number you Can put dS an Unsigned e T Subtract sub R
. . Load Linked 11 I Subtract Unsigned subu R

immediate?
Ans: 21> -1
1/31/19 Matni, CS64, Wi19 16

Instruction Representation in I-Type

op rs rt address
6b 5b | 5b 16 b
31-26 25-21 20-16 15-0
e Example:
addi $t0, $s0, 124
op rs rt address/const
8 16 8 124
op=28 mean “addi”
rs =16 means “$s0” A full list of codes can be
rt=8 means “St0” Jounaiintycun

address/const = 124

1/31/19

MIPS Reference Card

is the immediate value

Matni, CS64, Wil19 17

Exercises

e Using your MIPS Reference Card, write the 32 bit
instruction (using the |I-Type format and decimal
numbers for all the fields) for the following:

addi $t3, $t2, -42 Ox214BFFD6
andi $a0, %$a3, 1 Ox30E40001
slti $t8, $t8, 14 Ox2B18000E

1/31/19 Matni, CS64, Wil9 18

Functions

Up until this point, we have not discussed functions

Why not?
— |If you want to do functions, you need to use the stack

— Memory management is a must for the call stack ...
though we can make some progress without it

Think of recursion...
— How many variables are we going to need ahead of time?
— What memory do we end up using in recursive functions?
— We don’t always know...

1/31/19 Matni, CS64, Wil9

19

Implementing Functions

What capabilities do we need for functions?

1. Ability to execute code elsewhere
— Branches and jumps

2. Way to pass arguments in and out of the func.

— There a way (aka convention) to do that that we’ll learn
about

— We’'ll use the registers to do function I/O

1/31/19 Matni, CS64, Wil9 20

Jumping to Code

* We have ways to
jump unconditionally
to code (j instruction)

volid foo ()
bar () ;
baz () ;

}

e But what about jumping back?

— That is, after you’re done with a function?

{

void bar ()

}

{

volid baz ()

}

— We'll need a way to save where we were (so we can “jump” back)

e Q: What do need so that we can do this on MIPS?

— A: A way to store the program counter (SPC) multiple times

(to tell us where the next instruction is so that we know where to return!)

1/31/19

Matni, CS64, Wi19

21

{

Calling Functions on MIPS

* Two crucial instructions: jal and jr
* One specialized register: $ra

* jal (jump-and-link)
— Simultaneously jump to an address, and store the location
of the next instruction in register $ra

* Jr)

— Jump to the address stored in a register, often $ra

1/31/19 Matni, CS64, Wil9 22

Simple Call Example

* See program: simple_call.asm

Calls a function (test) which immediately returns
.text
test: # return to whoever made the call

jr $ra Note: SPIM always
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ starts execution at the
main:< # do stuff.. line labeled “main”
# then call the test function
jal test

exit: # exit
1i $vo, 10
syscall

1/31/19 Matni, CS64, Wil9 23



Passing and Returning Values

« We want to be able to call arbitrary functions
without knowing the implementation details

* So, we need to know our pre-/post-conditions

* Q: How might we achieve this in MIPS?

— A: We designate specific registers
for arguments and return values

1/31/19 Matni, CS64, Wil9 24



Passing and Returning Values in MIPS

* Registers $a0 thru $a3
— Argument registers, for passing function arguments

* Registers $vO and $vi
— Return registers, for passing return values

 What if we want to pass >4 args?

— There are ways around that. ..
but we won'’t discuss them in CS64. . .|

1/31/19 Matni, CS64, Wil9 25



YOUR TO-DOs

e Review ALL the demo codes
— Available via the class website

e Study for Midterm Exam

— Review Practice Exam

e Remember: Midterm next week!!!

1/31/19 Matni, CS64, Wil9

26






