
Memory	Topics	in	MIPS:	
Addressing,	Global	Vars	&	Arrays	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#7	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

1/29/19	 Matni,	CS64,	Wi19	 2	

This	
Week	on	
“Didja	
Know	
Dat?!”	

Steve	Wozniak	and	Steve	Job’s	first	commercial	
venture	was	the	Apple	1	in	1976	using	an	8-bit	MOS	
6502	CPU.	It	was	built	for	$500	and	initially	sold	for	
$666.66	because	Wozniak	“liked	repeating	
digits”	(about	$2900	in	today’s	dollars).	Keyboard	and	
TV	not	included.	They	sold	about	200	of	them	in	10	
months,	thus	assuring	the	continuation	of	their	
company.	
	
Previously,	the	only	other	popular	“personal”	
computer	was	the	Altair	8800,	which	you	had	to	
operate	with	switches!	

Administrative	

•  Lab	4	starts	Thursday	(Due	Monday)	

•  Midterm	Exam	on	Feb.	5th	(Next	Week	Tue.)	

1/29/19	 Matni,	CS64,	Wi19	 3	

What’s	on	the	Midterm?	
What’s	on	It?	
•  Everything	we’ve	done	so	far	from	start	to	end	of	this	week	

What	Should	I	Bring?	
•  Your	pencil(s),	eraser,	MIPS	Ref.	Card	
•  THAT’S	ALL!	

What	Else	Should	I	Do?	
•  Come	to	the	classroom	5-10	minutes	EARLY	
•  I	will	have	some	of	you	re-seated	
•  Bring	your	UCSB	ID	

1/29/19	 Matni,	CS64,	Wi19	 4	

Lecture	Outline	

•  Addressing	MIPS	Memory	

•  Global	Variables	

•  Arrays	

1/29/19	 Matni,	CS64,	Wi19	 5	

Any	Questions	From	Last	Lecture?	

1/29/19	 Matni,	CS64,	Wi19	 6	

Pop	Quiz!	
•  You	have	5	minutes	to	fill	in	the	missing	code.	You	can	use	your	

MIPS	Reference	Card.	
•  Fill	in	the	4	blank	spaces	:	

	main: 	#	assume	$t0	has	been	declared	earlier	(not	here)	
	 	 	li	$t1,	0	
	 	 	li	________________	
	 	 	blt	_________________________	
	 	 	li	$t1,	1	
	exit: 	________________________	

1/29/19	 Matni,	CS64,	Wi19	 7	

In	C++,	the	code	would	be:	
if	(t0	>=	5)	
	t1	=	1;	

else		
	t1	=	0;	

Pop	Quiz	Answers!	
•  You	have	5	minutes	to	fill	in	the	missing	code.	You	can	use	your	

MIPS	Reference	Card.	
•  Fill	in	the	4	blank	spaces	:	

	main: 	#	assume	$t0	has	been	declared	earlier	(not	here)	
	 	 	li	$t1,	0	
	 	 	li	________________	
	 	 	blt	_________________________	
	 	 	li	$t1,	1;	
	exit: 	________________________	

1/29/19	 Matni,	CS64,	Wi19	 8	

In	C++,	the	code	would	be:	
if	(t0	>=	5)	
	t1	=	1;	

else		
	t1	=	0;	

$t2,	5								#	something	to	compare!	
$t0,	$t2,	exit	

li	$v0,	10	
syscall	

1/29/19	 Matni,	CS64,	Wi19	 9	

1/29/19	 Matni,	CS64,	Wi19	 10	

.data	
num1:	.word	42	 	#	define	32b	w/	value	=	42	
num2:	.word	7	 	#	define	32b	w/	value	=	7	
num3:	.space	1 	#	define	one	(1)	32b	space	
	
.text	
main:	

	lw	$t0,	num1	 	 	#	load	what’s	in	num1	(42)	into	$t0	
	lw	$t1,	num2	 	 	#	load	what’s	in	num2	(7)	into	$t1	
	add	$t2,	$t0,	$t1 	#	($t0	+	$t1)	à	$t2	
	sw	$t2,	num3			#	load	what’s	in	$t2	(49)	into	num3	space	
		
	li	$v0,	1	
	lw	$a0,	num3			#	put	the	number	you	want	to	print	in	$a0	
	syscall 	 	 	 	#	print	integer	

	
	li	$v0,	10 	 	#	exit	
	syscall	

Example	4	

Memory	
Rs	

lw	

sw	

Addressing	Memory	
•  If	you’re	not	using	the	.data	declarations,	then	you	need	starting	addresses	of	

the	data	in	memory	with	lw	and	sw	instructions	
Example:	 	lw	$t0,	0x0000400A		ß	not	a	real	address,	just	looks	like	one…	
Example:	 	lw	$t0,	16($s0)	

•  1	word	=	32	bits	(in	MIPS)	
–  So,	in	a	32-bit	unit	of	memory,	that’s	4	bytes	

–  Represented	with	8	hexadecimals 	 		8	x	4	bits	=	32	bits…	checks	out…	

•  MIPS	addresses	sequential	memory	addresses,	but	not	in	“words”	
–  Addresses	are	in	Bytes	instead	
–  MIPS	words	must	start	at	addresses	that	are	multiples	of	4	
–  Called	an	alignment	restriction		

1/29/19	 Matni,	CS64,	Wi19	 11	

1/29/19	 Matni,	CS64,	Wi19	 12	

This	is	found	on	your	
MIPS	Reference	Card	

NOTE:	
Not	all	memory	addresses	
can	be	accessed	by	the	
programmer.	
	
Although	the	address	
space	is	32	bits,	the	top	
addresses	from	
0x80000000	to	0xFFFFFFFF	
are	not	available	to	user	
programs.	They	are	used	
mostly	by	the	OS.	

How	much	memory	does	a	
programmer	get	to	directly	

use	in	MIPS?	

Memory	Allocation	Map	

Mapping	MIPS	Memory	
(say	that	10	times	fast!)	

•  Imagine	computer	memory	like	a	big	array	of	words	
•  Size	of	computer	memory	is:	

	 	 	 	 	 	232	=	4	Gbits,	or	512	MBytes	(MB)	
–  We	only	get	to	use	2	Gbits,	or	256	MB	
–  That’s	(256	MB/	groups	of	4	B)	=	64	million	words	

1/29/19	 Matni,	CS64,	Wi19	 13	

8	bits	 8	bits	 8	bits	 8	bits	
word	

MIPS	Computer	Memory		
Addressing	Conventions	

1/29/19	 Matni,	CS64,	Wi19	 14	

1A	 80	 C5	 29	

52	 00	 37	 EE	

B1	 11	 1A	 A5	

0x0000			0x0001			0x0002		0x0003			
	
0x0004			0x0005			0x0006		0x0007	
	
0x0008		0x0009			0x000A		0x000B	

A	
à	

MIPS	Computer	Memory		
Addressing	Conventions	

1/29/19	 Matni,	CS64,	Wi19	 15	

1A	 80	 C5	 29	

52	 00	 37	 EE	

B1	 11	 1A	 A5	

0x0003			0x0002			0x0001		0x0000			
	
0x0007			0x0006			0x0005		0x0004	
	
0x000B		0x000A			0x0009		0x0008	

B	
ß	

or...	

A	Tale	of	2	Conventions…	

1/29/19	 Matni,	CS64,	Wi19	 16	

BIG	END	(MSByte)		
gets	addressed	first	

LITTLE	END	(LSByte)		
gets	addressed	first	

The	Use	of	Big	Endian	vs.	Little	Endian	

Origin:	Jonathan	Swift	(author)	in	“Gulliver's	Travels”.	
Some	people	preferred	to	eat	their	hard	boiled	eggs	from	the	“little	

end”	first	(thus,	little	endians),	while	others	prefer	to	eat	from		
the	“big	end”	(i.e.	big	endians).		

•  MIPS	users	typically	go	with	Big	Endian	convention	
–  MIPS	allows	you	to	program	“endian-ness”	

•  Most	Intel	processors	go	with	Little	Endian…	

•  It’s	just	a	convention	–	it	makes	no	difference	to	a	CPU!	

1/29/19	 Matni,	CS64,	Wi19	 17	

Global	Variables	
Recall:	
•  Typically,	global	variables	are	placed	directly	in	
memory,	not	registers	

•  lw	and	sw	for	load	word	and	save	word	
–  lw	≠	la	≠	move		!!!	
–  Syntax:	

	 	 	lw	register_destination,	N(register_with_address)	
	Where	N	=	offset	of	address	in	bytes	

•  Let’s	take	a	look	at:	access_global.asm	

1/29/19	 Matni,	CS64,	Wi19	 18	

access_global.asm	
Load	Address	(la)	and	Load	Word	(lw)	
	
.data	
myVariable:	.word	42	
.text	
main:	
	la	$t0,	myVariable						ß	WHAT’S	IN	$t0??	
	lw	$t1,	0($t0)	 	 	 	ß	WHAT	DID	WE	DO	HERE??	

	
	li	$v0,	1	
	move	$a0,	$t1	
	syscall 	 	 	 	 	 	ß	WHAT	SHOULD	WE	SEE	HERE??	

	
1/29/19	 Matni,	CS64,	Wi19	 19	

$t0	=	&myVariable	

access_global.asm	
Store	Word	(sw)				(…continuing	from	last	page…)	
	
li	$t1,	5	
sw	$t1,	0($t0)	 	 	ß	WHAT’S	IN	$t0	AGAIN??	
	
li	$t1,	0	
lw	$t1,	0($t0)	 	 	ß	WHAT	DID	WE	DO	HERE??	
	
li	$v0,	1	
move	$a0,	$t1	
syscall 	 	 	 	ß	WHAT	SHOULD	WE	SEE	HERE??	

1/29/19	 Matni,	CS64,	Wi19	 20	

Arrays	

•  Question:		
As	far	as	memory	is	concerned,	what	is	the	major	
difference	between	an	array	and	a	global	variable?	
– Arrays	contain	multiple	elements	

•  Let’s	take	a	look	at:	
–  print_array1.asm	
–  print_array2.asm	
–  print_array3.asm	

	
1/29/19	 Matni,	CS64,	Wi19	 21	

print_array1.asm	
int	myArray[]	 		
	=	{5,	32,	87,	95,	286,	386};	

int	myArrayLength	=	6;	
int	x;	
	
for	(x	=	0;	x	<	myArrayLength;	x++)		
{	
	print(myArray[x]);	
	print("\n");	

}	

1/29/19	 Matni,	CS64,	Wi19	 22	

1/29/19	 Matni,	CS64,	Wi19	 23	

Flow	Chart	for	
print_array1	

#	C	code:	
#	int	myArray[]	=		
#					{5,	32,	87,	95,	286,	386}	
#	int	myArrayLength	=	6	
#	for	(x	=	0;	x	<	myArrayLength;	x++)	{	
#			print(myArray[x])	
#			print("\n")	}	
.data	
newline:	.asciiz	"\n"	
myArray:	.word	5	32	87	95	286	386	
myArrayLength:	.word	6	
	
.text	
main:	

	#	t0:	x	
	#	initialize	x	
	li	$t0,	0	

loop:	
	#	get	myArrayLength,	put	result	in	$t2	
	#	$t1	=	&myArrayLength		
	la	$t1,	myArrayLength	
	lw	$t2,	0($t1)	

	
	#	see	if	x	<	myArrayLength	
	#	put	result	in	$t3	
	slt	$t3,	$t0,	$t2	
	#	jump	out	if	not	true	
	beq	$t3,	$zero,	end_main	

	

	#	get	the	base	of	myArray	
	la	$t4,	myArray	

	
	#	figure	out	where	in	the	array	we	need		
	#	to	read	from.	This	is	going	to	be	the	array		
	#	address	+	(index	<<	2).	The	shift	is	a	 		
	#	multiplication	by	four	to	index	bytes	
	#	as	opposed	to	words.			
	#	Ultimately,	the	result	is	put	in	$t7	
	sll	$t5,	$t0,	2	
	add	$t6,	$t5,	$t4	
	lw	$t7,	0($t6)	

	
	#	print	it	out,	with	a	newline	
	li	$v0,	1	
	move	$a0,	$t7	
	syscall	
	li	$v0,	4	
	la	$a0,	newline	
	syscall	

								
	#	increment	index	
	addi	$t0,	$t0,	1	

	
	#	restart	loop	
	j	loop	

	
end_main:	

	#	exit	the	program	
	li	$v0,	10	
	syscall	

print_array2.asm	

•  Same	as	print_array1.asm,	except	that	in	the	
assembly	code,	we	lift	redundant	computation	
out	of	the	loop.			

•  This	is	the	sort	of	thing	a	decent	compiler	(clang	
or	gcc	or	g++,	for	example)	will	do	with	a	HLL	
program	

•  Your	homework:	Go	through	this	assembly	code!	

1/29/19	 Matni,	CS64,	Wi19	 25	

print_array3.asm	
int	myArray[]		
	=	{5,	32,	87,	95,	286,	386};	

int	myArrayLength	=	6;	
int*	p;	
	
for	(p	=	myArray;	p	<	myArray	+	myArrayLength;	p++)		
{	
	print(*p);	
	print("\n");	

}	

1/29/19	 Matni,	CS64,	Wi19	 26	

Your	homework:	Go	through	this	assembly	code!	

YOUR	TO-DOs	

•  Review	ALL	the	demo	codes		
– Available	via	the	class	website	

•  Lab	4	on	Thursday!	

1/29/19	 Matni,	CS64,	Wi19	 27	

1/29/19	 Matni,	CS64,	Wi19	 28	

