
Flow	Control	&	Memory	Use		
in	Assembly	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#6	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

1/24/19	 Matni,	CS64,	Wi19	 2	

Legend:	Adm.	Grace	Hopper	coined	the	term	"debugging"	when	a	moth	
was	removed	from	the	computer	she	was	working	on	(see	below)	

Reality:	The	term	“bug”	was	used	in	engineering	in	the	19th	century.	As	
seen	independently	from	various	scientists,		
including	Ada	Lovelace	and	Thomas	Edison.	

This	
Week	
on	

“Didja	
Know	
Dat?!”	

Lecture	Outline	

•  .data	Directives	and	Basic	Memory	Use	

•  Branching	(Conditionals)		

•  Loops	

•  Accessing	Data	in	Memory	

1/24/19	 Matni,	CS64,	Wi19	 3	

Any	Questions	From	Last	Lecture?	

1/24/19	 Matni,	CS64,	Wi19	 4	

MIPS	Peculiarity:	
NOR	used	a	NOT	

•  How	to	make	a	NOT	function	using	NOR	instead	
•  Recall:	NOR	=	NOT	OR	
•  Truth-Table:	

•  So,	in	the	absence	of	a	NOT	function,		
	 	 	 	use	a	NOR	with	a	0	as	one	of	the	inputs!	

1/24/19	 Matni,	CS64,	Wi19	 5	

A	 B	 A	NOR	B	
0	 0	
0	 1	
1	 0	
1	 1	

1	

0		
0		
0		

Note	that:					
	
0	NOR	x	=	NOT	x

.data	Declaration	Types	
w/	Examples	

var1:			.byte	9								#	declare	a	single	byte	with	value	9	
var2:			.half	63							#	declare	a	16-bit	half-word	w/	val.	63	
var3:			.word	9433					#	declare	a	32-bit	word	w/	val.	9433	
num1:			.float	3.14				#	declare	32-bit	floating	point	number	
num2:			.double	6.28			#	declare	64-bit	floating	pointer	number	
str1:			.ascii	"Text"		#	declare	a	string	of	chars									
str3:			.asciiz	"Text"	#	declare	a	null-terminated	string	
str2:			.space	5							#	reserve	5	bytes	of	space	(useful	for	arrays)	
	

These	are	now	reserved	in	memory	and	we	can	call	them	up	by	
loading	their	memory	address	into	the	appropriate	registers.	
Highlighted	ones	are	the	ones	most	commonly	used	in	this	class.	

1/24/19	 Matni,	CS64,	Wi19	 6	

1/24/19	 Matni,	CS64,	Wi19	 7	

Example	
What	does	this	do?	

.data	
name:	.asciiz	“Jimbo	Jones	is	”	
rtn:	.asciiz	“	years	old.\n”	
	
.text	
main:	

	li	$v0,	4	
	la	$a0,	name	 	#	la	=	load	memory	address	
	syscall	

	
	li	$v0,	1	
	li	$a0,	15	
	syscall	

	
	li	$v0,	4	
	la	$a0,	rtn	
	syscall	

	
	li	$v0,	10	
	syscall	

What	goes	in	here?	à	

What	goes	in	here?	à	

Conditionals	

•  What	if	we	wanted	to	do:	
	if	(x	==	0)	{	printf(“x	is	zero”);	}	
– Can	we	write	this	in	assembly	with	what	we	know?	
•  No…	we	haven’t	covered	if-else	(aka	branching)	

•  What	do	we	need	to	implement	this?	
– A	way	to	compare	numbers	
– A	way	to	conditionally	execute	code	

1/24/19	 Matni,	CS64,	Wi19	 8	

Relevant	Instructions	in	MIPS	
for	use	with	branching	conditionals	

•  Comparing	numbers:		
	 	 	 	set-less-than	(slt)	
– Set	some	register	(i.e.	make	it	“1”)	if	a	less-than	
comparison	of	some	other	registers	is	true	

•  Conditional	execution:		
	 	 	 	branch-on-equal	(beq)		
	 	 	 	branch-on-not-equal	(bne)	
– “Go	to”	some	other	place	in	the	code	(i.e.	jump)	

1/24/19	 Matni,	CS64,	Wi19	 9	

if	(x	==	0)	{	printf(“x	is	zero”);	}	

.data	
	x_is_zero:	.asciiz	“x	is	zero”	

	
.text	
			bne	$t0,	$zero,	after_print	
			li	$v0,	4	
			la	$a0,	x_is_zero	
			syscall	
	
after_print:		
			li	$v0,	10	
			syscall	

1/24/19	 Matni,	CS64,	Wi19	 10	

Create	a	constant	
string	called	
“x_is_zero”		
If	$t0	!=	0	go	to	

the	block	
labeled	as	

“after_print”	

End	the	
program	

(otherwise)	prepare	to	
print	a	string…	

…and	that	string	is	
inside	of	“x_is_zero”	

Note	
the	
flow	

Loops	
•  How	might	we	translate	the	following	C++	to	assembly?	

	
n	=	3;	
sum	=	0;	
while	(n	!=	0)		
{	
			sum	+=	n;	
			n--;		
}	
cout	<<	sum;	

1/24/19	 Matni,	CS64,	Wi19	 11	

n	=	3;	sum	=	0;	
while	(n	!=	0)	{	sum	+=	n;	n--;	}	

	
.text	
main:	
			li	$t0,	3			#	n	
			li	$t1,	0			#	running	sum	
loop:	
			beq	$t0,	$zero,	loop_exit	
			addu	$t1,	$t1,	$t0	
			addi	$t0,	$t0,	-1	
			j	loop	
	
loop_exit:	
			li	$v0,	1	
			move	$a0,	$t1	
			syscall	
	
			li	$v0,	10	
			syscall	

1/24/19	 Matni,	CS64,	Wi19	 12	

Set	up	the	variables	in	$t0,	$t1	

If	$t0	==	0	go	to	“loop_exit”	

(otherwise)	make	$t1	the	(unsigned)	sum	of	$t1	
and	$t0		(i.e.	sum	+=	n)	

decrement	$t0				(i.e.	n--)	
jump	to	the	code	labeled	“loop”		

(i.e.	repeat	loop)	

end	the	program	

prepare	to	print	out	an	integer,		
which	is	inside	the	$t1	reg.	(i.e.	print	sum)	

Let’s	Run	More	Programs!!	
Using	SPIM	

•  More!!	
•  This	time	exploring	conditional	logic	and	loops	

These	assembly	code	programs	are	made	available	
to	you	via	the	class	webpage	

1/24/19	 Matni,	CS64,	Wi19	 13	

More	Branching	Examples	
int	y;	
if	(x	==	5)		
{	

	y	=	8;	
}		
else	if	(x	<	7)		
{	

	y	=	x	+	x;	
}		
else		
{	

	y	=	-1;	
}	
print(y)	

1/24/19	 Matni,	CS64,	Wi19	 14	

.text	
main:			#	t0:	x	and	t1:	y	

	li	$t0,	5		 	#	example	
	li	$t2,	5	 	#	what’s	this?	
	beq	$t0,	$t2,	equal_5	

	
					#	check	if	less	than	7	
			 	li	$t2,	7	
			 	slt	$t3,	$t0,	$t2	
					bne	$t3,	$zero,	less_than_7	
	
				#	fall	through	to	final	else	
			 	li	$t1,	-1	
			 	j	after_branches	
									
equal_5:	
			 	li	$t1,	8	
			 	j	after_branches	

less_than_7:	
	 	add	$t1,	$t0,	$t0	
	#	could	jump	to	after_branches,		
	#	but	this	is	what	we	will	fall	
	#	through	to	anyways	
	
after_branches:	
#	print	out	the	value	in	y	($t1)	
		 	li	$v0,	1	
					move	$a0,	$t1	
					syscall	
									
					#	exit	the	program	
					li	$v0,	10	
					syscall	

Larger	Data	Structures	

•  Recall:	registers	vs.	memory	
– Where	would	data	structures,	arrays,	etc.	go?	
– Which	is	faster	to	access?	Why?	

•  Some	data	structures	have	to	be	stored	in	
memory	
– So	we	need	instructions	that	“shuttle”	data	to/
from	the	CPU	and	computer	memory	(RAM)	

1/24/19	 Matni,	CS64,	Wi19	 15	

Accessing	Memory	
•  Two	base	instructions:		
–  load-word	(lw)	from	memory	to	registers	
–  store-word	(sw)	from	registers	to	memory	

•  MIPS	lacks	instructions	that	do	more	with	memory	
than	access	it		
(e.g.,	retrieve	something	from	memory	and	then	add)	
–  Operations	are	done	step-by-step	
– Mark	of	RISC	architecture	

1/24/19	 Matni,	CS64,	Wi19	 16	

Memory	
Rs	

lw	

sw	

1/24/19	 Matni,	CS64,	Wi19	 17	

.data	
num1:	.word	42	
num2:	.word	7	
num3:	.space	1	
	
.text	
main:	

	lw	$t0,	num1	
	lw	$t1,	num2	
	add	$t2,	$t0,	$t1	
	sw	$t2,	num3	
		
	li	$v0,	1	
	lw	$a0,	num3	
	syscall	

	
	li	$v0,	10	
	syscall	

Example	4	
What	does	this	do?	

Memory	
Rs	

lw	

sw	

1/24/19	 Matni,	CS64,	Wi19	 18	

.data	
num1:	.word	42	 	#	define	32b	w/	value	=	42	
num2:	.word	7	 	#	define	32b	w/	value	=	7	
num3:	.space	1 	#	define	one	(1)	32b	space	
	
.text	
main:	

	lw	$t0,	num1	 	 	#	load	what’s	in	num1	(42)	into	$t0	
	lw	$t1,	num2	 	 	#	load	what’s	in	num2	(7)	into	$t1	
	add	$t2,	$t0,	$t1 	#	($t0	+	$t1)	à	$t2	
	sw	$t2,	num3			#	load	what’s	in	$t2	(49)	into	num3	space	
		
	li	$v0,	1	
	lw	$a0,	num3			#	put	the	number	you	want	to	print	in	$a0	
	syscall 	 	 	 	#	print	integer	

	
	li	$v0,	10 	 	#	exit	
	syscall	

Example	4	

Memory	
Rs	

lw	

sw	

YOUR	TO-DOs	

•  Review	ALL	the	demo	codes		
– Available	via	the	class	website	

•  Assignment	#3	
– Due	Monday!	

1/24/19	 Matni,	CS64,	Wi19	 19	

1/24/19	 Matni,	CS64,	Wi19	 20	

