
Assembly	Language	Basics	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#5	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

Lecture	Outline	

•  Talking	to	the	OS	
–  Std	I/O	
–  Exiting	

•  General	view	of	instructions	in	MIPS	

•  Operand	Use	

•  .data	Directives	and	Basic	Memory	Use	

1/21/19	 Matni,	CS64,	Wi19	 2	

Administrative	Stuff	

•  How	did	Lab#	2	go?	
– Challenge	level:					
HARD				vs.				OK				vs.				EASY-PEASY	

•  Remember,	our	office	hours!	J	
– Prof.	Matni 	 	Th.	1	–	2:30	PM	 	SSMS	4409	
– TA	Bay-Yuan 	 	Fr.	11	AM	–	1	PM 	Trailer	936	
– TA	Shiyu 	 	 	Fr.	3	–	5	PM	 	 	Trailer	936	

1/21/19	 Matni,	CS64,	Wi19	 3	

Any	Questions	From	Last	Lecture?	

1/21/19	 Matni,	CS64,	Wi19	 4	

1/21/19	 Matni,	CS64,	Wi19	 5	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

Ok.	Where’s	My	MIPS	Computer???	

•  You’re	not	getting	one.	

•  Who	needs	hardware	when	“cutting	edge”	
software	can	do	the	job?!?!?!?!	

•  We	will	be	SIMULATING	a	MIPS	processor	using	
software	on	our	Macs/Windows/Linux	machines.	

•  Hence…	SPIM…	The	MIPS	Emulator!	
–  Something	funny	about	that	name…	

1/21/19	 Matni,	CS64,	Wi19	 6	

Adding	More	Functionality	
•  Ok,	so	I	know	how	to	add	2	numbers	in	MIPS.	

–  Wow	

•  What	about:	display	results????		Yes,	that’s	kinda	important…	

•  What	would	this	entail?	
–  Engaging	with	Input	/	Output	part	of	the	computer	
–  i.e.	talking	to	devices	
Q:	What	usually	handles	this?		

•  So	we	need	a	way	to	tell		
	 	 	 	 	the	operating	system	to	kick	in	

1/21/19	 Matni,	CS64,	Wi19	 7	

A:	the	operating	system	

Talking	to	the	OS	
•  We	are	going	to	be	running	on	MIPS	emulator	called	

SPIM		
–  Optionally,	through	a	program	called	QtSPIM	(GUI	based)	
–  What	is	an	emulator?	

•  We’re	not	actually	running	our	commands	on	an	actual	
MIPS	(hardware)	processor!!	
	 	 	…we’re	letting	software	pretend	it’s	hardware…		

		 	 	 			…so,	in	other	words…	we’re	“faking	it”	

•  Ok,	so	how	might	we	print	something	onto	std.out?	

1/21/19	 Matni,	CS64,	Wi19	 8	

SPIM	Routines	

•  MIPS	features	a	syscall	instruction,	which	triggers	
a	software	interrupt,	or	exception	

•  Outside	of	an	emulator	(i.e.	in	the	real	world),	these	
instructions	pause	the	program	and	tell	the	OS	to	go	
do	something	with	I/O	

•  Inside	the	emulator,	it	tells	the	emulator	to	go	
emulate	something	with	I/O	

1/21/19	 Matni,	CS64,	Wi19	 9	

syscall	

•  So	we	have	the	OS/emulator’s	attention,	but	how	
does	it	know	what	we	want?	

•  The	OS/emulator	has	access	to	the	CPU	registers	

•  We	put	special	values	(codes)	in	the	registers	to	
indicate	what	we	want	
–  These	are	codes	that	can’t	be	used	for	anything	else,	so	
they’re	understood	to	be	just	for	syscall	

–  So…	is	there	a	“code	book”????	
1/21/19	 Matni,	CS64,	Wi19	 10	

Yes!	All	CPUs	come	with	manuals.	
For	us,	we	have	the	MIPS	Ref.	Card	

(Finally)	Printing	an	Integer	
•  For	SPIM,	if	register	$v0	contains	1	and	then	we	issue	a	syscall,	then	

SPIM	will	print	whatever	integer	is	stored	in	register	$a0 	ß	this	is	a	
specific	rule	using	a	specific	code	
–  Note:	$v0	is	used	for	other	stuff	as	well	–	more	on	that	later…	
–  When	$v0=1,	syscall	is	expecting	an	integer!	

•  Other	values	put	into	$v0	indicate	other	types	of	I/O	calls	to	syscall	
Examples:		
–  $v0	=	3	means	double	(or	the	mem	address	of	one)	in	$a0	
–  $v0	=	4	means	string	(or	the	mem	address	of	one)	in	$a0	
–  $v0	=	5	means	get	user	input	from	std	input	and	place	in	$v0	
–  We’ll	explore	some	of	these	later,	but	check	MIPS	ref	card	for	all	of	them	

1/21/19	 Matni,	CS64,	Wi19	 11	

(Finally)	Printing	an	Integer	
•  Remember,	the	usual	syntax	to	load	immediate	a	value	into	a	register	is:	
	

	 	 	li	<register>,	<value>	
	

	Example:	 	li	$v0,	1 	 	#	PUTS	THE	NUMBER	1	INTO	REG.	$v0	

•  You	can	also	move	the	value	of	one	register	into	another	too!	
•  E.g.	To	make	sure	that	the	register	$a0	has	the	value	of	what	you	want	to	

print	out	(let’s	say	it’s	in	another	register),	use	the	move	command:	
	 	move	<to	register>,	<from	register>	

		
	Example:	 	move	$a0,	$t0			#	PUTS	THE	VALUE	IN	REG.	$t0	INTO	REG.	$a0	
	

1/21/19	 Matni,	CS64,	Wi19	 12	

1/21/19	 Matni,	CS64,	Wi19	 13	

Ok…	So	About	Those	Registers	
MIPS	has	32	registers,	each	is	32	bits	

U
se
d	
fo
r	d

at
a	

Program	Files	for	MIPS	Assembly	

•  The	files	have	to	be	text	

•  Typical	file	extension	type	is	.asm	

•  To	leave	comments,		
	 	 	 	use	#	at	the	start	of	the	line	

1/21/19	 Matni,	CS64,	Wi19	 14	

Augmenting	with	Printing	
#	Main	program	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	
	
#	Print	the	integer	that’s	in	$t3	
#	to	std.output	
li	$v0,	1	
move	$a0,	$t3	
syscall	

1/21/19	 Matni,	CS64,	Wi19	 15	

What	About	Std	In?	

1/21/19	 Matni,	CS64,	Wi19	 16	

#	Get	an	integer	value	from	user	
li	$v0,	5	
syscall	
#	Your	new	input	int	is	in	$v0	
#	You	can	move	it	around		
#	and	do	stuff	with	it	
move	$t0,	$v0	
sll	$t0,	$t0,	2		#	Multiply	it	by	4	
	

We’re	Not	Quite	Done	Yet!	
Exiting	an	Assembly	Program	in	SPIM	
•  If	you	are	using	SPIM,	then	you	need	to	say	
when	you	are	done	as	well	
– Most	HLL	programs	do	this	for	you	automatically	

•  How	is	this	done?	
–  Issue	a	syscall	with	a	special	value	in	$v0	=	10	
(decimal)	

1/21/19	 Matni,	CS64,	Wi19	 17	

Augmenting	with	Exiting	
.text 	 	#	We	always	have	to	have	this	starting	line	
#	Main	program	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	
	
#	Print	to	std.output	
li	$v0,	1	
move	$a0,	$t3	
Syscall	
	
#	End	program	
li	$v0,	10	
syscall	

Matni,	CS64,	Wi19	 18	

Let’s	Run	This	Program	Already!	
Using	SPIM	

•  We’ll	call	it	simpleadd.asm	
•  Run	it	on	CSIL	as:				$	spim	–f	simpleadd.asm	

•  We’ll	also	run	other	arithmetic	programs	and	explain	
them	as	we	go	along	
– TAKE	NOTES!	

1/21/19	 Matni,	CS64,	Wi19	 19	

1/21/19	 Matni,	CS64,	Wi19	 20	

MIPS	System	Services	
Examples	of	
what	we’ll	be	
using	in	CS64	 stdout	

stdin	

File	I/O	

Now	Let’s	Make	it	a		
Full	Program	(almost)	

•  We	need	to	tell	the	
assembler	(and	its	simulator)	
which	bits	should	be	placed	
where	in	memory	

1/21/19	 Matni,	CS64,	Wi19	 21	

Allocated	as	
program	RUNs	

Allocated	at	
program	LOAD	

Constants	to	be	used	in	the	
program	(like	strings)	

mutable	global	variables	

the	text	of	the	program	

Marking	the	Code	

•  For	the	simulator,	you’ll	
need	a	.text	directive	to	
specify	code	

1/21/19	 Matni,	CS64,	Wi19	 22	

Allocated	as	
program	RUN	

Allocated	at	
program	LOAD	

Constants	to	be	used	in	the	
program	(like	strings)	

mutable	global	variables	

the	text	of	the	program	

.text	
	
#	Main	program	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	
	
#	Print	to	standard	output	
li	$v0,	1	
move	$a0,	$t3	
syscall	
	
#	End	program	
li	$v0,	10	
syscall	

1/21/19	 Matni,	CS64,	Wi19	 23	

List	of	all	Core	Instructions	in	MIPS	
“R”	

Arithmetic	

Branching	

R-Type	Syntax	

<op>			<rd>,	<rs>,	<rt>	
op	:	operation	
rd	:	register	destination		
rs	:	register	source		
rt	:	register	target		
	
Examples:	
	 	add	$s0,	$t0,	$t2	
	 	 	 	Add	($t0	+	$t2)	then	store	in	reg.	$s0	
	 	sub	$t3,	$t4,	$t5	
	 	 	 	Subtract	($t4	–	$t5)	then	store	in	reg.	$t3	

	
	

	
1/21/19	 Matni,	CS64,	Wi19	 24	

1/21/19	 Matni,	CS64,	Wi19	 25	

List	of	all	Core	Instructions	in	MIPS	
“I”	

Arithmetic	

Branching	

Memory	

Not	for	CS64	

I-Type	Syntax	

<op>			<rs>,	<rt>,	immed	
op	:	operation	
rs	:	register	source		
rt	:	register	target		
	
Examples:	
	 	addi	$s0,	$t0,	33	
	 	 	 	Add	($t0	+	33)	then	store	in	reg.	$s0	
	 	ori	$t3,	$t4,	0	
	 	 	 	Logic	OR	($t4	with	0)	then	store	in	reg.	$t3	

Note:	this	last	one	has	the	effect	of	just	moving	$t4	value	into	$t3	
	
	

	

1/21/19	 Matni,	CS64,	Wi19	 26	

1/21/19	 Matni,	CS64,	Wi19	 27	

List	of	the	Arithmetic	Core	Instructions	in	MIPS	

Mostly	used	in	CS64	

You	are	not	
responsible	for	the	rest	

of	them	

The	move	Instruction…	
		 	 		 			 		…	is	suspicious…	

•  The	move	instruction	does	not	actually	show	up	in	SPIM!	

•  It	is	a	pseudo-instruction		
•  It’s	easy	for	us	to	use,	but	it’s	actually	a	“macro”	of	

another	actual	instruction	
	
ORIGINAL: 	move	$a0,	$t3	
ACTUAL: 	 	addu	$a0,	$zero,	$t3	
	 	 	 	#	what’s	addu?	what’s	$zero?	

1/21/19	 Matni,	CS64,	Wi19	 28	

Why	Pseudocodes?	
And	what’s	this	$zero??	

•  $zero	
–  Specified	like	a	normal	register,		

	 	 	 	 	but	does	not	behave	like	a	normal	register	
–  Writes	to	$zero	are	not	saved	
–  Reads	from	$zero	always	return	0	value	

•  Why	have	move	as	a	pseudo-instruction	instead	of	as	an	
actual	instruction?	
–  It’s	one	less	instruction	to	worry	about	
–  One	design	goal	of	RISC	is	to	cut	out	redundancy	
–  move	isn’t	the	only	one!	li	is	another	one	too!	

1/21/19	 Matni,	CS64,	Wi19	 29	

1/21/19	 Matni,	CS64,	Wi19	 30	

List	of	all	PsuedoInstructions	in	MIPS	
That	You	Are	Allowed	to	Use	in	CS64!!!	

ALL	OF	THIS	AND	MORE	IS	ON	YOUR	HANDY	“MIPS	REFERENCE	CARD”	
FOUND	ON	THE	CLASS	WEBSITE	

 plus this one à Load Address la

A	Note	About	Operands	

•  Operands	in	arithmetic	instructions	are	limited	
and	are	done	in	a	certain	order	
– Arithmetic	operations	always	happen	in	the	registers	

•  Example:	f	=	(g	+	h)	–	(i	+	j)			
–  The	order	is	prescribed	by	the	parentheses	
–  Let’s	say,	f,	g,	h,	i,	j	are	assigned	to	registers		
$s0,	$s1,	$s2,	$s3,	$s4	respectively	

– What	would	the	MIPS	assembly	code	look	like?	

1/21/19	 Matni,	CS64,	Wi19	 31	

Example	1	

f	=	(g	+	h)	–	(i	+	j)		
	 	i.e.	$s0	=	($s1	+	$s2)	–	($s3	+	$s4)	

	
	

add	$t0,	$s1,	$s2	
add	$t1,	$s3,	$s4	
sub	$s0,	$t0,	$t1	

	
1/21/19	 Matni,	CS64,	Wi19	 32	

add	rd,	rs,	rt	
destination,	source1,	source2	

Syntax	for	“add”	

Example	2	

f	=	g	*	h	-	i	
	 	i.e.	$s0	=	($s1	*	$s2)	–	$s3	

	
	

mult	$s1,	$s2	
mflo	$t0	 	 	 		
#	mflo	directs	where	the	answer	of	the	mult	should	go	

sub	$s0,	$t0,	$s3	
	
1/21/19	 Matni,	CS64,	Wi19	 33	

The	mult	instruction	
•  To	multiply	2	integers	together:	
	

li	$t0,	5	
mult	$t1,	$t0	
mflo	$t2	

	
•  mult	cannot	be	used	with	an	‘immediate’	
•  So	first,	we	load	our	multiplier	into	a	register	($t0)	
•  Then	we	multiply	this	with	out	multiplicand	($t1)	
•  And	we	finally	put	the	result	in	the	final	reg	($t2)	using	
the	mflo	instruction	

1/21/19	 Matni,	CS64,	Wi19	 34	

Global	Variables,	Arrays,	and	Strings	

•  Typically,	global	variables	are	placed	directly	in	memory	and	not	
registers	
–  Why	might	this	be?	

•  Ans:	Not	enough	registers…		
	 	 	esp.	if	there	are	multiple	variables	

•  What	do	you	think	we	do	with	arrays?	Why?	
•  What	do	you	think	we	do	with	strings?	Why?	

•  We	use	the	.data	directive	
–  To	declare	variables,	their	values,	and	their	names	used	in	the	

program	
–  Storage	is	allocated	in	main	memory	(RAM)	

1/21/19	 Matni,	CS64,	Wi19	 35	

.data	Declaration	Types	
w/	Examples	

var1:			.byte	9								#	declare	a	single	byte	with	value	9	
var2:			.half	63							#	declare	a	16-bit	half-word	w/	val.	63	
var3:			.word	9433					#	declare	a	32-bit	word	w/	val.	9433	
num1:			.float	3.14				#	declare	32-bit	floating	point	number	
num2:			.double	6.28			#	declare	64-bit	floating	pointer	number	
str1:			.ascii	"Text"		#	declare	a	string	of	chars									
str3:			.asciiz	"Text"	#	declare	a	null-terminated	string	
str2:			.space	5							#	reserve	5	bytes	of	space	(useful	for	arrays)	
	

These	are	now	reserved	in	memory	and	we	can	call	them	up	by	
loading	their	memory	address	into	the	appropriate	registers.	
Highlighted	ones	are	the	ones	most	commonly	used	in	this	class.	

1/21/19	 Matni,	CS64,	Wi19	 36	

li	vs	la	

•  li 	 	Load	Immediate	
–  Use	this	when	you	want	to	put	an	integer	value	
into	a	register	

–  Example:								li	$t0,	42	

•  la 	 	Load	Address	
–  Use	this	when	you	want	to	put	an	address	value	into	a	register	
–  Example:								la	$t0,	myLittlePony	
	where	“myLittlePony”	is	a	pre-defined	label	for	something		
	in	memory	(defined	under	the	.data	directive).	

1/21/19	 Matni,	CS64,	Wi19	 37	

1/21/19	 Matni,	CS64,	Wi19	 38	

Example	
What	does	this	do?	

.data	
name:	.asciiz	“Jimbo	Jones	is	”	
rtn:	.asciiz	“	years	old.\n”	
	
.text	
main:	

	li	$v0,	4	
	la	$a0,	name	 	#	la	=	load	memory	address	
	syscall	

	
	li	$v0,	1	
	li	$a0,	15	
	syscall	

	
	li	$v0,	4	
	la	$a0,	rtn	
	syscall	

	
	li	$v0,	10	
	syscall	

What	goes	in	here?	à	

What	goes	in	here?	à	

YOUR	TO-DOs	

•  Review	ALL	the	demo	codes		
– Available	via	the	class	website	

•  Assignment	#3	
– Due	Monday!	

1/21/19	 Matni,	CS64,	Wi19	 39	

1/21/19	 Matni,	CS64,	Wi19	 40	

