Introduction to Assembly Language:

CS 64: Computer Organization and Design Logic
Lecture #4
Winter 2019

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

The “Patch”
s

This Week
on
“Didja
Know
Dat?!”

86 560

Small corrections to the programmed sequence could be done
by patching over portions of the paper tape and re-punching the
1/17/19 holes in that section,

Image courtesy of the Smithsonian Archives Center.

Lecture Outline

* Review of Carry Out vs. Overflow bits
 MIPS core processing blocks
* Basic programming in assembly

* Arithmetic programs

1/17/19 Matni, CS64, Wil9

Administrative Stuff

* How did Lab# 2 go?
— Too easy? Too hard? Just right?
— Remember: it’s due via turnin on Monday!

 We will be providing assignment (lab) feedback on
GauchoSpace!

— Follow up with me/TAs during office hours

e Remember, our office hours! ©
— Prof. Matni Th.1-2:30 PM SSMS 4409
— TABay-Yuan Fr.11AM -1PM Trailer 936
— TA Shiyu Fr.3-5PM Trailer 936

1/17/19 Matni, CS64, Wil9

Any Questions From Last Lecture?

1/17/19 Matni, CS64, Wil9

Carry vs. Overflow

* The carry bit/flag works for — and is looked at —
only for unsigned (positive) numbers

* Asimilar bit/flag works is looked at for if signed
(two’s complement) numbers are used in the
addition: the overflow bit

1/17/19 Matni, CS64, Wil9

Overflow:
for Negative Number Addition

 What about if I'm adding two negative numbers?
Like: 1001 + 10117
— Then, | get: 0100 with the extra bit set at 1

— Sanity Check:
That’s adding (-7) + (-5), so | expected -12, so what’s wrong here?

— The answer is beyond the capability of 4 bits in 2’s complement!!!

 The extra bit in this case is called overflow and it
indicates that the addition of negative numbers has
resulted in a number that’s
beyond the range of the given bits.

1/17/19 Matni, CS64, Wil9 7

How Do We Determine
if Overflow Has Occurred?

* When adding 2 signed numbers: X+y=s

if x,y>0 AND s<0
OR if x,y<0 AND s>0

Then, overflow has occurred

1/17/19 Matni, CS64, Wil9

Example 1

Side-note:
Add: -39 and 92 in signed 8-bit binary What is the range of
Cin_signed_bit signed numbers w/ 8 bits?
1 & - -
1101 1001 -27to (27— 1), or
-39 -128 to 127
- 0101 1100
53 1
Cout 2

That’s 53 in signed 8-bits! Looks ok!

There’s a carry-out (we don’t care)
But there is no overflow (V)

Note that V = 0, while Cout =1 and Cin_signed bit=1
1/17/19 Matni, CS64, Wil19

Example 2

V = Cout@Cin_signed_bit

Add: 104 and 45 in signed 8-bit binary
. .~ Cin_signed_bit

104 0110 1000
e 0010 1101
149
1001 0101

Cout=0 | J

_ I That’s NOT 149 in signed 8-bits!
There’s no carry-out (again, we don’t care)

But there is overflow!
Given that this binary result is not 149, but actually =107 !

Note that V = 1, while Cout = 0 and Cin_signed_bit=1

1/17/19 Matni, CS64, Wil9 10

" W

Introduction to

"M Assembly Language

l(/(

Programming

g’
0
0
0
)]
At uﬁﬁfﬂg N
/ MNE"&:& Lonn
PO C S
(o) =
— ==
- o ©
v

The Simple Language of a CPU

 We have: variables, integers, addition, and assignment

* Restrictions:
— Can only assign integers directly to variables
— Can only add variables, always two at a time (no more)

EXAMPLE:
z=5+7; hasto be simplified to:

X=)5; What func is needed to
v=7; implement this?
Z=X+Y: <

An adder: but how many bits?

1/17/19 Matni, CS64, Wil9 12

Core Components

What we need in a CPU is:

 Some place to hold the statements (instructions to the CPU)
as we operate on them

 Some place to tell us which statement is next
 Some place to hold all the variables
 Some way to do arithmetic on numbers

Processors just read a series of statements (instructions) forever.
No magic!

1/17/19 Matni, CS64, Wil19 13

Core Components

What we need in a CPU is:

Some place to hold the statements (instructions to the CPU)
as we operate on them -2

Some place to tell us which statement is next
Some place to hold all the variables 2RSS

Some way to do arithmetic on numbers ARITHMETIC
LOGIC UNIT (ALU)

...And one more thing:

Some place to tell us which statement is currently being
SCoked INSTRUCTION REGISTER (IR)

1/17/19 Matni, CS64, Wil19 14

Basic Interaction

* Copy instruction from memory at wherever the
program counter (PC) says into
the instruction register (IR)

* Execute it, possibly involving registers and the
arithmetic logic unit (ALU)

 Update the PCto point [lgk=titbiOn

to the next instruction [t
instruction_register =

memory [program_counter];
* Repeat execute(instruction_register);
program_counter++;

1/17/19 Matni, CS64, Wil9 15

Instruction Register Registers

Instruction Register Registers

e

Instruction Register Registers

Instruction Register Registers

Matni, CS64, Wil9

Instruction Register Registers

Matni, CS64, Wil9

Why MIPS?

* MIPS:

— a reduced instruction set computer (RISC) architecture
developed by a company called MIPS Technologies (1981)

* Relevant in the embedded systems area of CS/CE

* All modern commercial processors share the same
core concepts as MIPS, just with extra stuff

e ...but mostimportantly...

1/17/19 Matni, CS64, Wil9

21

MIPS is Simpler...

... than other instruction sets for CPUs
So it’s a great learning tool

* Dozens of instructions (as opposed to hundreds)
* Lack of redundant instructions or special cases
* 5 stage pipeline versus 24 stages

1/17/19 Matni, CS64, Wil9 22

Note: Pipelining in CPUs

* Pipelining is a fundamental design in CPUs

* Allows multiple instructions to go on at once
— a.k.a instruction-level parallelism

Basic five-stage pipeline
Clock

cycle
Instr. 1 2 3 - 5 6 7

No.
IF ID EX 'TMEM WB

IF ID EX MEM | WB
IF ID EX |[MEM| WB
IF ID EX | MEM
|F ID EX

4= w N —

(@)}

(IF = Instruction Fetch, ID = Instruction Decode, EX = Execute,
1/17/19 MEM = Memory access, WB = Register write back). 23

Code on MIPS

Original

MIPS
1i $te, 5
1i $t1, 7

add $t3, $to, $t1

1/17/19

Matni, CS64, Wil9

24

Code on MIPS

Original

MIPS
1i $to, 5
1i $t1, 7
add $t3, $to, $t1

load immediate: put the
given value into a register

St0: temporary register 0

Matni, CS64, Wil9 25

Code on MIPS

Original

MIPS
1i $te, 5
1i $t1, 7
add $t3, $to, $t1

load immediate: put the
given value into a register

Stl: temporary register 1

Matni, CS64, Wil9 26

Code on MIPS

Original

MIPS
1i $to, 5
1i $t1, 7
add $t3, $to, $t1

add: add the rightmost
registers, putting the result
in the first register

St3: temporary register 3

Matni, CS64, Wil9 27

Available Registers in MIPS

e 32 registers in all

— Refer to your
MIPS Reference Card

 For the moment,
let’s only consider
registers St0 thru $t9

NAME NUMBER

USE
$zero 0 The Constant Value 0

$at 1 Assembler Temporary

$v0-$v1 2.3 Values for F pnction Resplts
and Expression Evaluation

$a0-$a3 4-7 Arguments
$t0-$t7 8-15 Temporaries
$s0-$s7 16-23 Saved Temporaries
$t8-$t9 24-25 Temporaries
$k0-$k1 26-27 Reserved for OS Kernel

$gp 28 Global Pointer

$sp 29 Stack Pointer

$fp 30 Frame Pointer

$ra 31 Return Address

1/17/19 Matni, CS64, Wil19

28

Assembly

* The code that you see is
MIPS assembly

* Assembly is *almost* what the machine sees. For
the most part, it is a direct translation to binary
from here (known as machine language/code)

 An assembler takes assembly code and changes
it into the actual 1's and O0’s for machine code

— Analogous to a compiler for HL code

1/17/19 Matni, CS64, Wil9 29

Machine Code/Language

 What a CPU actually accepts as input
 What actually gets executed

e Each instruction is represented with 32 bits
— No more, no less

 There are three different instruction formats: R, |, and J
— These allow for instructions to take on different roles
— R-Format is used when it’s all about registers
— |-Format is used when you involve (immediate) numbers
— J-Format is used when you do code “jumping” (i.e. branching)

1/17/19 Matni, CS64, Wil9

30

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Program Counter

Arithmetic Logic Unit

g = SESeeS Bl S E

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Program Counter

Arithmetic Logic Unit

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

acd - SE3L b Bl en bl

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

gdd - SESe S Bl e S F]

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Instruction Register Registers

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

Instruction Register Registers

geltliindt S, = el i |

Since all instructions are 32-bits, then they
each occupy 4 Bytes of memory.
Memory is addressed in Bytes
(more on this later).

