
Introduction	to	Assembly	Language	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#4	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

1/17/19	 Matni,	CS64,	Wi19	 2	

This	Week	
on		

“Didja	
Know	
Dat?!”	

Lecture	Outline	

•  Review	of	Carry	Out	vs.	Overflow	bits	

•  MIPS	core	processing	blocks	

•  Basic	programming	in	assembly	

•  Arithmetic	programs	

1/17/19	 Matni,	CS64,	Wi19	 3	

Administrative	Stuff	
•  How	did	Lab#	2	go?	
–  Too	easy?	Too	hard?	Just	right?	
–  Remember:	it’s	due	via	turnin	on	Monday!	

•  We	will	be	providing	assignment	(lab)	feedback	on	
GauchoSpace!	
–  Follow	up	with	me/TAs	during	office	hours	

•  Remember,	our	office	hours!	J	
–  Prof.	Matni 	 	Th.	1	–	2:30	PM 	 	SSMS	4409	
–  TA	Bay-Yuan 	Fr.	11	AM	–	1	PM 	 	Trailer	936	
–  TA	Shiyu	 	 	Fr.	3	–	5	PM 	 	 	Trailer	936	

1/17/19	 Matni,	CS64,	Wi19	 4	

Any	Questions	From	Last	Lecture?	

1/17/19	 Matni,	CS64,	Wi19	 5	

Carry	vs.	Overflow	

•  The	carry	bit/flag	works	for	–	and	is	looked	at	–		
only	for	unsigned	(positive)	numbers	

•  A	similar	bit/flag	works	is	looked	at	for	if	signed	
(two’s	complement)	numbers	are	used	in	the	
addition:	 	 	 	 	the	overflow	bit	

1/17/19	 Matni,	CS64,	Wi19	 6	

Overflow:		
for	Negative	Number	Addition	

•  What	about	if	I’m	adding	two	negative	numbers?	
Like:	1001	+	1011?	
–  Then,	I	get:	0100	with	the	extra	bit	set	at	1	
–  Sanity	Check:		
That’s	adding	(-7)	+	(-5),	so	I	expected	-12,	so	what’s	wrong	here?	

–  The	answer	is	beyond	the	capability	of	4	bits	in	2’s	complement!!!	

•  The	extra	bit	in	this	case	is	called	overflow	and	it	
indicates	that	the	addition	of	negative	numbers	has	
resulted	in	a	number	that’s		
	 	 	beyond	the	range	of	the	given	bits.	

1/17/19	 Matni,	CS64,	Wi19	 7	

How	Do	We	Determine		
if	Overflow	Has	Occurred?	

•  When	adding	2	signed	numbers:	 	 	x	+	y	=	s	

	 	if 	x,	y	>	0 	AND 	s	<	0	
OR	 	if 	x,	y	<	0 	AND 	s	>	0	

Then,	overflow	has	occurred	

1/17/19	 Matni,	CS64,	Wi19	 8	

Example	1	
Add:	-39	and	92	in	signed	8-bit	binary	
	
	
	-39 	 		
		92 	 	 		

		53 	 		

	
	
	
There’s	a	carry-out	(we	don’t	care)	
But	there	is	no	overflow	(V)	
Note	that	V	=	0,	while	Cout	=	1	and	Cin_signed_bit	=	1	
1/17/19	 Matni,	CS64,	Wi19	 9	

Side-note:	
What	is	the	range	of		
signed	numbers	w/	8	bits?	
	
-27	to	(27	–	1),	or	
-128	to	127	

	1101	1001	
	0101	1100	

10011	0101	

That’s	53	in	signed	8-bits!	Looks	ok!	

1	
Cin_signed_bit	

Cout	

Example	2	

Add:	104	and	45	in	signed	8-bit	binary	
	

	104 	 		
		45 	 	 		

	149 	 		

	
	
There’s	no	carry-out	(again,	we	don’t	care)	
But	there	is	overflow!		

	 	Given	that	this	binary	result	is	not	149,	but	actually	–107	!	
Note	that	V	=	1,	while	Cout	=	0	and	Cin_signed_bit	=	1	
	
1/17/19	 Matni,	CS64,	Wi19	 10	

	0110	1000	
	0010	1101	

	1001	0101	

That’s	NOT	149	in	signed	8-bits!	

1	
Cin_signed_bit	

Cout	=	0	

V	=	Cout	+	Cin_signed_bit	

1/17/19	 Matni,	CS64,	Wi19	 11	

Introduction	to		
Assembly	Language	

Programming	

The	Simple	Language	of	a	CPU	

•  We	have:	variables,	integers,	addition,	and	assignment	

•  Restrictions:	
–  Can	only	assign	integers	directly	to	variables		
–  Can	only	add	variables,	always	two	at	a	time	(no	more)	

EXAMPLE:	
	z	=	5	+	7;				has	to	be	simplified	to:	

x	=	5;	
y	=	7;	

z	=	x	+	y;	

1/17/19	 Matni,	CS64,	Wi19	 12	

What	func	is	needed	to		
implement	this?	
ßßß	
An	adder:	but	how	many	bits?	

Core	Components	
What	we	need	in	a	CPU	is:	
•  Some	place	to	hold	the	statements	(instructions	to	the	CPU)	

as	we	operate	on	them	
•  Some	place	to	tell	us	which	statement	is	next	
•  Some	place	to	hold	all	the	variables	
•  Some	way	to	do	arithmetic	on	numbers	

Processors	just	read	a	series	of	statements	(instructions)	forever.	
No	magic!	

1/17/19	 Matni,	CS64,	Wi19	 13	

Core	Components	
What	we	need	in	a	CPU	is:	
•  Some	place	to	hold	the	statements	(instructions	to	the	CPU)	

as	we	operate	on	them	à	
•  Some	place	to	tell	us	which	statement	is	next	à	
•  Some	place	to	hold	all	the	variables	à	
•  Some	way	to	do	arithmetic	on	numbers	à	
	
…And	one	more	thing:	
•  Some	place	to	tell	us	which	statement	is	currently	being	

executed	à	

1/17/19	 Matni,	CS64,	Wi19	 14	

Basic	Interaction	
•  Copy	instruction	from	memory	at	wherever	the	
program	counter	(PC)	says	into		
the	instruction	register	(IR)	

•  Execute	it,	possibly	involving	registers	and	the	
arithmetic	logic	unit	(ALU)	

•  Update	the	PC	to	point		
to	the	next	instruction	

•  Repeat	

1/17/19	 Matni,	CS64,	Wi19	 15	

initialize();	
while	(true)	{	

	instruction_register	=	
	 	memory[program_counter];	
	execute(instruction_register);	
	program_counter++;	

}	

1/17/19	 Matni,	CS64,	Wi19	 16	

1/17/19	 Matni,	CS64,	Wi19	 17	

0	

0:	x	=	5;	
1:	y	=	7;	
2:	z	=	x	+	y;		

x	=	5;	 5	

1/17/19	 Matni,	CS64,	Wi19	 18	

1	

0:	x	=	5;	
1:	y	=	7;	
2:	z	=	x	+	y;		

y	=	7;	 5	

0	+	1	=	1	

x	=	5;	
7	

1/17/19	 Matni,	CS64,	Wi19	 19	

0:	x	=	5;	
1:	y	=	7;	
2:	z	=	x	+	y;		

y	=	7;	 5	
7	

2	

1	+	1	=	2	

z	=	x	+	y;	

1/17/19	 Matni,	CS64,	Wi19	 20	

0:	x	=	5;	
1:	y	=	7;	
2:	z	=	x	+	y;		

y	=	7;	 5	
7	

2	

5	+	7	=	12	

z	=	x	+	y;	

12	

Why	MIPS?	

•  MIPS:	
–  a	reduced	instruction	set	computer	(RISC)	architecture	
developed	by	a	company	called	MIPS	Technologies	(1981)	

•  Relevant	in	the	embedded	systems	area	of	CS/CE	

•  All	modern	commercial	processors	share	the	same	
core	concepts	as	MIPS,	just	with	extra	stuff	

•  ...but	most	importantly...	

1/17/19	 Matni,	CS64,	Wi19	 21	

MIPS	is	Simpler…	

	 	 	 	…	than	other	instruction	sets	for	CPUs	
So	it’s	a	great	learning	tool	

•  Dozens	of	instructions	(as	opposed	to	hundreds)	
•  Lack	of	redundant	instructions	or	special	cases	
•  5	stage	pipeline	versus	24	stages	

1/17/19	 Matni,	CS64,	Wi19	 22	

Note:	Pipelining	in	CPUs	

1/17/19	 Matni,	CS64,	Wi19	 23	

•  Pipelining	is	a	fundamental	design	in	CPUs	
•  Allows	multiple	instructions	to	go	on	at	once	
– a.k.a	instruction-level	parallelism	

Code	on	MIPS	

Original	
	
x	=	5;	
y	=	7;	
z	=	x	+	y;	

1/17/19	 Matni,	CS64,	Wi19	 24	

MIPS	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	

Code	on	MIPS	

Original	
	
x	=	5;	
y	=	7;	
z	=	x	+	y;	

1/17/19	 Matni,	CS64,	Wi19	 25	

MIPS	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	
load	immediate:	put	the	
given	value	into	a	register	
	
$t0:	temporary	register	0	

Code	on	MIPS	

Original	
	
x	=	5;	
y	=	7;	
z	=	x	+	y;	

1/17/19	 Matni,	CS64,	Wi19	 26	

MIPS	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	
load	immediate:	put	the	
given	value	into	a	register	
	
$t1:	temporary	register	1	

Code	on	MIPS	

Original	
	
x	=	5;	
y	=	7;	
z	=	x	+	y;	

1/17/19	 Matni,	CS64,	Wi19	 27	

MIPS	
li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	
add:	add	the	rightmost	
registers,	putting	the	result	
in	the	first	register	
	
$t3:	temporary	register	3	

Available	Registers	in	MIPS	

•  32	registers	in	all	
– Refer	to	your		
MIPS	Reference	Card	

•  For	the	moment,		
let’s	only	consider		
registers	$t0	thru	$t9	

1/17/19	 Matni,	CS64,	Wi19	 28	

Assembly	

•  The	code	that	you	see	is		
MIPS	assembly	

•  Assembly	is	*almost*	what	the	machine	sees.	For	
the	most	part,	it	is	a	direct	translation	to	binary	
from	here	(known	as	machine	language/code)	

•  An	assembler	takes	assembly	code	and	changes	
it	into	the	actual	1’s	and	0’s	for	machine	code	
– Analogous	to	a	compiler	for	HL	code	

1/17/19	 Matni,	CS64,	Wi19	 29	

li	$t0,	5	
li	$t1,	7	
add	$t3,	$t0,	$t1	

Machine	Code/Language	
•  What	a	CPU	actually	accepts	as	input	
•  What	actually	gets	executed	

•  Each	instruction	is	represented	with	32	bits	
–  No	more,	no	less	

•  There	are	three	different	instruction	formats:	R,	I,	and	J	
–  These	allow	for	instructions	to	take	on	different	roles	
–  R-Format	is	used	when	it’s	all	about	registers	
–  I-Format	is	used	when	you	involve	(immediate)	numbers	
–  J-Format	is	used	when	you	do	code	“jumping”	(i.e.	branching)	

1/17/19	 Matni,	CS64,	Wi19	 30	

1/17/19	 Matni,	CS64,	Wi19	 31	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 32	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 33	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 34	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 35	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 36	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 37	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 38	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 39	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 40	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/17/19	 Matni,	CS64,	Wi19	 41	

Since	all	instructions	are	32-bits,	then	they	
each	occupy	4	Bytes	of	memory.	
Memory	is	addressed	in	Bytes		

(more	on	this	later).	

1/18/19	 Matni,	CS64,	Wi19	 42	

