
Binary Arithmetic: Bit Shifting, 2s Complement
Intro to Assembly Language

CS 64: Computer Organization and Design Logic
Lecture #3

Winter 2019

Ziad Matni, Ph.D.
Dept. of Computer Science, UCSB

1/16/2019 Matni, CS64, Wi19 2

Why do CPU programmers celebrate
Christmas and Halloween

on the same day?

Because Oct-31 = Dec-25

Administrative Stuff

• The class is still full… waitlist is closed…

• Assignment 2 is this Thursday

• Linux Questions

• Reminder of Office Hours!
– Prof. Matni Th. 1 – 2:30 PM SSMS 4409
– TA Bay-Yuan Fr. 11 AM – 1 PMTrailer 936
– TA Shiyu Fr. 3 – 5 PM Trailer 936

1/16/2019 Matni, CS64, Wi19 3

Any Questions From Last Lecture?

1/16/2019 Matni, CS64, Wi19 4

5-Minute Pop Quiz!!!

YOU MUST SHOW YOUR WORK!!!
1. Calculate and give your answer in hexadecimal:

~(0x3E | 0xFC)

2. Convert from binary to decimal AND to
hexadecimal. Use any technique(s) you like:

a) 1001001
b) 10010010

1/16/2019 Matni, CS64, Wi19 5

Answers…

1. Calculate and give your answer in
hexadecimal:

~(0x3E | 0xFC)

2. Convert from binary to decimal AND
hexadecimal. Use any technique you like:

a) 1001001

b) 10010010

1/16/2019 Matni, CS64, Wi19 6

= ~(0xFE) = 0x01

= 0100 1001 = 0x49
= 1 + 8 + 64 = 73
= 1001 0010 = 0x92
I see that it’s (1001001) x 2 = 146

Lecture Outline

• Bit shift operations
• Two’s complement
• Addition and subtraction in binary

1/16/2019 Matni, CS64, Wi19 7

Bit Shift Left

• Move all the bits N positions to the left
• What do you do the positions now empty?

– You put in N number of 0s

• Example: Shift “1001” 2 positions to the left
1001 << 2 = 100100

• Why is this useful as a form of multiplication?

1/16/2019 Matni, CS64, Wi19 8

Multiplication by Bit Left Shifting

• Veeeery useful in CPU (ALU) design
– Why?

• Because you don’t have to design a multiplier
• You just have to design a way for the bits to shift

(which is relatively easier)

1/16/2019 Matni, CS64, Wi19 9

Bit Shift Right
• Move all the bits N positions to the right, subbing-in

either N number of 0s or N 1s on the left
• Takes on two different forms

• Example: Shift “1001” 2 positions to the right
1001 >> 2 = either 0010 or 1110

• The information carried in the last 2 bits is lost.
• If Shift Left does multiplication,

what does Shift Right do?
– It divides, but it truncates the result

1/16/2019 Matni, CS64, Wi19 10

Two Forms of Shift Right

• Subbing-in 0s makes sense
• What about subbing-in the leftmost bit with 1?

• It’s called “arithmetic” shift right:
1100 (arithmetic) >> 1 = 1110

• It’s used for twos-complement purposes
– What?

1/16/2019 Matni, CS64, Wi19 11

Negative Numbers in Binary

• So we know that, for example, 6(10) = 110(2)

• But what about –6(10) ???

• What if we added one more bit on the far left to
denote “negative”?
– i.e. becomes the new MSB

• So: 110 (+6) becomes 1110 (–6)
• But this leaves a lot to be desired

– Bad design choice…
1/16/2019 Matni, CS64, Wi19 12

Twos Complement Method

• This is how Twos Complement fixes this.
• Let’s write out -6(10) in 2s-Complement binary in 4 bits:

So, –6(10) = 1010(2) according to this rule

1/16/2019 Matni, CS64, Wi19 13

0110
1001
1010

First take the unsigned (abs) value (i.e. 6)
and convert to binary:

Then negate it (i.e. do a “NOT” function on it):
Now add 1:

Let’s do it Backwards… By doing it
THE SAME EXACT WAY!

• 2s-Complement to Decimal method is the same!

• Take 1010 from our previous example
• Negate it and it becomes 0101
• Now add 1 to it & it becomes 0110, which is 6(10)

1/16/2019 Matni, CS64, Wi19 14

Another View of 2s Complement

1/16/2019 Matni, CS64, Wi19 15

NOTE:

In Two’s Complement,
if the number’s MSB
is “1”, then that means
it’s a negative number
and if it’s “0” then the
number is positive.

Another View of 2s Complement

1/16/2019 Matni, CS64, Wi19 16

NOTE:
Opposite numbers show
up as symmetrically
opposite each other in
the circle.

NOTE AGAIN:
When we talk of 2s
complement, we must
also mention the
number of bits involved

Ranges

• The range represented by number
of bits differs between positive and
negative binary numbers

• Given N bits, the range represented is:
0 to

and

1/16/2019 Matni, CS64, Wi19 17

+2N – 1 for positive numbers
–2N-1 to +2N-1 – 1
for 2’s Complement negative numbers

Addition

• We have an elementary notion of adding single digits, along
with an idea of carrying digits
– Example: when adding 3 to 9, we put forward 2 and carry the 1

(i.e. to mean 12)

• We can build on this notion to add numbers together that are
more than one digit long

• Example: 1 2 3
+ 3 8 9

1/16/2019 Matni, CS64, Wi19 18

11

215

carried digits

Addition in Binary

• Same mathematical principal applies

0 0 1 1
+ 1 1 0 1

1/16/2019 Matni, CS64, Wi19 19

1

00

11

00

3
+ 13

161

1

Q: What’s being assumed here???

A: That these are purely positive numbers

Theoretically, I can add any binary no.
with N1 digits to any other binary no.
with N2 digits.

Practically, a CPU must have a defined
no. of digits that it’s working with.

WHY???

Exercises

Implementing an 8-bit adder:

• What is (0x52) + (0x4B) ?
– Ans: 0x9D, output carry bit = 0

• What is (0xCA) + (0x67)?
– Ans: 0x31, output carry bit = 1

1/16/2019 Matni, CS64, Wi19 20

Black Box Perspective of ANY
N-Bit Binary Adder

1/16/2019 Matni, CS64, Wi19 21

N-bit
BINARY
ADDER

X
Y

Output Results Bits

Output Carry BitCIN

COUT

X + Y + CIN
Input Bits

Carry-in bit

N

N

N

This is a useful perspective for either writing
an N-bit adder function in code,

or for designing the actual digital circuit that does this!

Output Carry Bit Significance

• For unsigned (i.e. positive) numbers,
COUT = 1 means that the result did not fit into the
number of bits allotted

• Could be used as an error condition for software
– For example, you’ve designed a 16-bit adder and

during some calculation of positive numbers, your
carry bit/flag goes to “1”. Conclusion?

– Your result is
outside the maximum range allowed by 16 bits.

1/16/2019 Matni, CS64, Wi19 22

Carry vs. Overflow

• The carry bit/flag works for – and is looked at –
only for unsigned (positive) numbers

• A similar bit/flag works is looked at for if signed
(two’s complement) numbers are used in the
addition: the overflow bit

1/16/2019 Matni, CS64, Wi19 23

Overflow:
for Negative Number Addition

• What about if I’m adding two negative numbers?
Like: 1001 + 1011?
– Then, I get: 0100 with the extra bit set at 1
– Sanity Check:

That’s adding (-7) + (-5), so I expected -12, so what’s wrong here?
– The answer is beyond the capability of 4 bits in 2’s complement!!!

• The extra bit in this case is called overflow and it
indicates that the addition of negative numbers has
resulted in a number that’s

beyond the range of the given bits.

1/16/2019 Matni, CS64, Wi19 24

How Do We Determine
if Overflow Has Occurred?

• When adding 2 signed numbers: x + y = s

if x, y > 0 AND s < 0
OR if x, y < 0 AND s > 0

Then, overflow has occurred

1/16/2019 Matni, CS64, Wi19 25

Example 1
Add: -39 and 92 in signed 8-bit binary

-39
92

53

There’s a carry-out (we don’t care)
But there is no overflow (V)
Note that V = 0, while Cout = 1 and Cin_signed_bit = 1
1/16/2019 Matni, CS64, Wi19 26

Side-note:
What is the range of
signed numbers w/ 8 bits?

-27 to (27 – 1), or
-128 to 127

1101 1001
0101 1100

10011 0101
That’s 53 in signed 8-bits! Looks ok!

1
Cin_signed_bit

Cout

Example 2

Add: 104 and 45 in signed 8-bit binary

104
45

149

There’s no carry-out (again, we don’t care)
But there is overflow!

Given that this binary result is not 149, but actually –107 !
Note that V = 1, while Cout = 0 and Cin_signed_bit = 1

1/16/2019 Matni, CS64, Wi19 27

0110 1000
0010 1101

1001 0101

That’s NOT 149 in signed 8-bits!

1
Cin_signed_bit

Cout = 0

V = Cout + Cin_signed_bit

YOUR TO-DOs

• Assignment #2 coming up!

• Next lesson: Assembly Language!
– Do your readings!!

1/16/2019 Matni, CS64, Wi19 28

1/16/2019 Matni, CS64, Wi19 29

	Binary Arithmetic: Bit Shifting, 2s Complement�Intro to Assembly Language
	Slide Number 2
	Administrative Stuff
	Any Questions From Last Lecture?
	5-Minute Pop Quiz!!!
	Answers…
	Lecture Outline
	Bit Shift Left
	Multiplication by Bit Left Shifting
	Bit Shift Right
	Two Forms of Shift Right
	Negative Numbers in Binary
	Twos Complement Method
	Let’s do it Backwards… By doing it �THE SAME EXACT WAY!
	Another View of 2s Complement
	Another View of 2s Complement
	Ranges
	Addition
	Addition in Binary
	Exercises
	Black Box Perspective of ANY�N-Bit Binary Adder
	Output Carry Bit Significance
	Carry vs. Overflow
	Overflow: �for Negative Number Addition
	How Do We Determine �if Overflow Has Occurred?
	Example 1
	Example 2
	YOUR TO-DOs
	Slide Number 29

