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Why do CPU programmers celebrate 
Christmas and Halloween 

on the same day?

Because   Oct-31 = Dec-25



Administrative Stuff

• The class is still full… waitlist is closed…

• Assignment 2 is this Thursday

• Linux Questions

• Reminder of Office Hours!
– Prof. Matni Th. 1 – 2:30 PM SSMS 4409
– TA Bay-Yuan Fr. 11 AM – 1 PMTrailer 936
– TA Shiyu Fr. 3 – 5 PM Trailer 936
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Any Questions From Last Lecture?
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5-Minute Pop Quiz!!!

YOU MUST SHOW YOUR WORK!!!
1. Calculate and give your answer in hexadecimal:

~(0x3E | 0xFC)

2. Convert from binary to decimal AND to 
hexadecimal. Use any technique(s) you like:

a) 1001001
b) 10010010
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Answers…

1. Calculate and give your answer in 
hexadecimal:

~(0x3E | 0xFC)

2. Convert from binary to decimal AND 
hexadecimal. Use any technique you like:

a) 1001001

b) 10010010
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= ~(0xFE) = 0x01

= 0100 1001 = 0x49
= 1 + 8 + 64 = 73
= 1001 0010 = 0x92
I see that it’s (1001001) x 2 = 146



Lecture Outline

• Bit shift operations
• Two’s complement
• Addition and subtraction in binary
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Bit Shift Left

• Move all the bits N positions to the left
• What do you do the positions now empty?

– You put in N number of 0s

• Example: Shift “1001” 2 positions to the left
1001 << 2 = 100100

• Why is this useful as a form of multiplication?
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Multiplication by Bit Left Shifting

• Veeeery useful in CPU (ALU) design
– Why?

• Because you don’t have to design a multiplier
• You just have to design a way for the bits to shift

(which is relatively easier)
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Bit Shift Right
• Move all the bits N positions to the right, subbing-in 

either N number of 0s or N 1s on the left
• Takes on two different forms

• Example: Shift “1001” 2 positions to the right
1001 >> 2 = either 0010 or 1110

• The information carried in the last 2 bits is lost.
• If Shift Left does multiplication, 

what does Shift Right do?
– It divides, but it truncates the result
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Two Forms of Shift Right

• Subbing-in 0s makes sense
• What about subbing-in the leftmost bit with 1?

• It’s called “arithmetic” shift right:
1100 (arithmetic) >> 1 = 1110

• It’s used for twos-complement purposes
– What?
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Negative Numbers in Binary

• So we know that, for example, 6(10) = 110(2)

• But what about  –6(10) ???

• What if we added one more bit on the far left to 
denote “negative”?
– i.e. becomes the new MSB

• So: 110 (+6) becomes 1110 (–6)
• But this leaves a lot to be desired

– Bad design choice…
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Twos Complement Method

• This is how Twos Complement fixes this.
• Let’s write out -6(10) in 2s-Complement binary in 4 bits:

So, –6(10) = 1010(2) according to this rule
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0110
1001
1010

First take the unsigned (abs) value (i.e. 6) 
and convert to binary:

Then negate it (i.e. do a “NOT” function on it):
Now add 1:



Let’s do it Backwards… By doing it 
THE SAME EXACT WAY!

• 2s-Complement to Decimal method is the same!

• Take 1010 from our previous example
• Negate it and it becomes 0101
• Now add 1 to it & it becomes 0110, which is 6(10)
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Another View of 2s Complement
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NOTE:

In Two’s Complement,
if the number’s MSB 
is “1”, then that means
it’s a negative number 
and if it’s “0” then the 
number is positive.



Another View of 2s Complement
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NOTE:
Opposite numbers show
up as symmetrically 
opposite each other in 
the circle.

NOTE AGAIN:
When we talk of 2s 
complement, we must 
also mention the 
number of bits involved



Ranges

• The range represented by number
of bits differs between positive and 
negative binary numbers

• Given N bits, the range represented is:
0 to

and 
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+2N – 1 for positive numbers 
–2N-1  to  +2N-1 – 1
for 2’s Complement negative numbers



Addition

• We have an elementary notion of adding single digits, along 
with an idea of carrying digits
– Example: when adding 3 to 9, we put forward 2 and carry the 1 

(i.e. to mean 12)  

• We can build on this notion to add numbers together that are 
more than one digit long

• Example: 1 2 3
+ 3 8 9

1/16/2019 Matni, CS64, Wi19 18

11

215

carried digits



Addition in Binary

• Same mathematical principal applies

0 0 1 1
+ 1 1 0 1
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1

00

11

00

3
+ 13

161

1

Q: What’s being assumed here???

A: That these are purely positive numbers

Theoretically, I can add any binary no. 
with N1 digits to any other binary no. 
with N2 digits.

Practically, a CPU must have a defined 
no. of digits that it’s working with.

WHY???



Exercises

Implementing an 8-bit adder:

• What is (0x52) + (0x4B) ?
– Ans: 0x9D, output carry bit = 0

• What is (0xCA) + (0x67)?
– Ans: 0x31, output carry bit = 1
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Black Box Perspective of ANY
N-Bit Binary Adder
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N-bit 
BINARY
ADDER

X
Y

Output Results Bits

Output Carry BitCIN

COUT

X + Y + CIN
Input Bits

Carry-in bit

N

N

N

This is a useful perspective for either writing
an N-bit adder function in code, 

or for designing the actual digital circuit that does this!



Output Carry Bit Significance

• For unsigned (i.e. positive) numbers, 
COUT = 1 means that the result did not fit into the 
number of bits allotted

• Could be used as an error condition for software
– For example, you’ve designed a 16-bit adder and 

during some calculation of positive numbers, your 
carry bit/flag goes to “1”. Conclusion?

– Your result is 
outside the maximum range allowed by 16 bits.
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Carry vs. Overflow

• The carry bit/flag works for – and is looked at –
only for unsigned (positive) numbers

• A similar bit/flag works is looked at for if signed
(two’s complement) numbers are used in the 
addition: the overflow bit
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Overflow: 
for Negative Number Addition

• What about if I’m adding two negative numbers?
Like: 1001 + 1011?
– Then, I get: 0100 with the extra bit set at 1
– Sanity Check: 

That’s adding (-7) + (-5), so I expected -12, so what’s wrong here?
– The answer is beyond the capability of 4 bits in 2’s complement!!!

• The extra bit in this case is called overflow and it 
indicates that the addition of negative numbers has 
resulted in a number that’s 

beyond the range of the given bits.
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How Do We Determine 
if Overflow Has Occurred?

• When adding 2 signed numbers: x + y = s

if x, y > 0 AND s < 0
OR if x, y < 0 AND s > 0
---------------------------------------------
Then, overflow has occurred
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Example 1
Add: -39 and 92 in signed 8-bit binary

-39
92

---
53

There’s a carry-out (we don’t care)
But there is no overflow (V)
Note that V = 0, while Cout = 1 and Cin_signed_bit = 1
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Side-note:
What is the range of 
signed numbers w/ 8 bits?

-27 to (27 – 1), or
-128 to 127

1101 1001
0101 1100
---------

10011 0101
That’s 53 in signed 8-bits! Looks ok!

1
Cin_signed_bit

Cout



Example 2

Add: 104 and 45 in signed 8-bit binary

104
45
---
149

There’s no carry-out (again, we don’t care)
But there is overflow! 

Given that this binary result is not 149, but actually –107 !
Note that V = 1, while Cout = 0 and Cin_signed_bit = 1
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0110 1000
0010 1101
---------
1001 0101

That’s NOT 149 in signed 8-bits!

1
Cin_signed_bit

Cout = 0

V = Cout + Cin_signed_bit



YOUR TO-DOs

• Assignment #2 coming up!

• Next lesson: Assembly Language!
– Do your readings!!
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