Binary Arithmetic

CS 64: Computer Organization and Design Logic Lecture #2 Winter 2019

> Ziad Matni, Ph.D. Dept. of Computer Science, UCSB

Administrative Stuff

- The class is still full...
- Did you check out the syllabus?
- Did you check out the class website?
- Did you check out Piazza (and get access to it)?
- Did you go to lab today?
- Do you understand how you will be submitting your assignments?

Lecture Outline

- Review of positional notation, binary logic
- Bitwise operations
- Bit shift operations
- Two's complement
- Addition and subtraction in binary

Counting Numbers in Different Bases

- We "normally" count in 10s
 - Base 10: decimal numbers
 - We use 10 numerical symbols in Base 10: "0" thru "9"
- Computers count in 2s
 - Base 2: **binary** numbers
 - We use 2 numerical symbols in Base 2: "0" and "1"
- Represented with **1 bit** (2¹ = 2)

Counting Numbers in Different Bases

Other convenient bases in computer architecture:

- Base 8: octal numbers
 - Number symbols are 0 thru 7
 - Represented with **3 bits** $(2^3 = 8)$
- Base 16: hexadecimal numbers
 - Number symbols are 0 thru F:

A = 10, B = 11, C = 12, D = 13, E = 14, F = 15

- Represented with 4 bits $(2^4 = 16)$

• Why are 4 bit representations convenient???

1/10/19

Matni, CS64, Wi19

What's in a Number?

What is that???

Well, what NUMERICAL BASE are you expressing it in?

1/10/19

Matni, CS64, Wi19

Positional Notation of Decimal Numbers

642 in base 10 (decimal) can be described in "*positional notation*" as:

 $6 \times 10^2 = 6 \times 100 = 600$ + $4 \times 10^1 = 4 \times 10 = 40$ + $2 \times 10^0 = 2 \times 1 = 2 = 642$ in base 10

Numerical Bases and Their Symbols

- How many "symbols" or "digits" do we use in Decimal (Base 10)?
- Base 2 (Binary)?
- Base 16 (Hexadecimal)?
- Base N?

Positional Notation

This is how you convert **any** base number **into decimal**!

Each digit gets multiplied by B^N Where: B = the base N = the position of the digit

Example: given the number **613** in **base 7**:

Number in decimal = $6 \times 7^2 + 1 \times 7^1 + 3 \times 7^0 = 304$

Positional Notation in Binary

11101 in base 2 *positional notation* is:

 $1 \times 2^{4} = 1 \times 16 = 16$ + 1 \times 2^{3} = 1 \times 8 = 8 + 1 \times 2^{2} = 1 \times 4 = 4 + 0 \times 2^{1} = 1 \times 2 = 0 + 1 \times 2^{0} = 1 \times 1 = 1

So, **11101** in base 2 is 16 + 8 + 4 + 0 + 1 = **29** in base 10

Converting Binary to Octal and Hexadecimal

(or any base that's a power of 2)

NOTE THE FOLLOWING:

- Binary is 1 bit
- Octal is 3 bits
- Hexadecimal is 4 bits
- Use the "group the bits" technique
 - Always start from the *least significant digit*
 - Group every 3 bits together for bin \rightarrow oct
 - Group every 4 bits together for bin \rightarrow hex

Converting Binary to Octal and Hexadecimal

• Take the example: **10100110**

...to octal:

10100110 2 4 6

...to hexadecimal:

10100110 **106** 246 in octal

A6 in hexadecimal

Converting Decimal to Other Bases

Algorithm for converting number in base 10 to other bases

While (the quotient is not zero)

- 1. Divide the decimal number by the new base
- 2. Make the remainder the next digit to the left in the answer
- 3. Replace the original decimal number with the quotient
- 4. Repeat until your quotient is zero

Example: What is 98 (base 10) in base 8?

In-Class Exercise:

Converting Decimal into Binary & Hex

Convert 54 (base 10) into binary and hex:

- 54 / 2 = 27 R 0
- 27 / 2 = 13 R 1
- 13 / 2 = 6 R 1
- 6 / 2 = 3 R 0
- 3/2=1R1
- 1/2=0R1

54 (decimal) = 110110 (binary) = 36 (hex)

<u>Sanity check:</u> 110110 = 2 + 4 + 16 + 32 = 54

Convenient Table...

HEXADECIMAL	BINARY	HEXADECIMAL (Decimal)	BINARY
0	0000	A (10)	1010
1	0001	B (11)	1011
2	0010	C (12)	1100
3	0011	D (13)	1101
4	0100	E (14)	1110
5	0101	F (15)	1111
6	0110		
7	0111		
8	1000		
9	1001		

Always Helpful to Know...

Ν	2 ^N	Ν	2 ^ℕ	Ν	2 ^N
1	2	11	2048 = 2 kb	21	2 Mb
2	4	12	4 kb	22	4 Mb
3	8	13	8 kb	23	8 Mb
4	16	14	16 kb	24	16 Mb
5	32	15	32 kb	25	32 Mb
6	64	16	64 kb	26	64 Mb
7	128	17	128 kb	27	128 Mb
8	256	18	256 kb	28	256 Mb
9	512	19	512 kb	29	512 Mb
10	1024 = 1 kilobits	20	1024 kb = 1 megabits	30	1 Gb

1/10/19

Binary Logic Refresher NOT, AND, OR

Х	$\frac{NOT}{X}$
0	1
1	0

Х	Y	X AND Y X & & Y X.Y
0	0	0
0	1	0
1	0	0
1	1	1

Х	Y	X OR Y X Y X + Y
0	0	0
0	1	1
1	0	1
1	1	1

Binary Logic Refresher Exclusive-OR (XOR)

The output is "1" only if the inputs are opposite

Х	Y	X XOR Y X⊕Y
0	0	0
0	1	1
1	0	1
1	1	0

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- In C/C++, it's denoted by a tilde: ~

$$\sim(1001) = 0110$$

Exercises

- Sometimes hexadecimal numbers are written in the **0xhh** notation, so for example: The hex 3B would be written as 0x3B
- What is ~(0x04)?
 - Ans: OxFB
- What is ~(0xE7)?
 - Ans: 0x18

Bitwise AND

- Similar to logical AND (&&), except it works on a bit-by-bit manner
- In C/C++, it's denoted by a single ampersand: &
- (1001 & 0101) = 1 0 0 1& 0 1 0 1

= 0 0 0 1

Exercises

- What is (0xFF) & (0x56)?
 - Ans: 0x56
- What is (0x0F) & (0x56)?
 - Ans: 0x06
- What is (0x11) & (0x56)?
 Ans: 0x10
- Note how & can be used as a "masking" function

Bitwise OR

- Similar to logical OR (||), except it works on a bitby-bit manner
- In C/C++, it's denoted by a single pipe:
- (1001 | 0101) = 1 0 0 1| 0 1 0 1
 - = 1 1 0 1

Exercises

- What is (0xFF) | (0x92)?
 Ans: 0xFF
- What is (0xAA) | (0x55)?
 Ans: 0xFF
- What is (0xA5) | (0x92)?
 Ans: B7

Bitwise XOR

- Works on a bit-by-bit manner
- In C/C++, it's denoted by a single carat: ^

$$(1001 \ \ 0101) = 1 \ 0 \ 0 \ 1$$

 $\ \ \ 0 \ 1 \ 0 \ 1$
 $- 1 \ 1 \ 0 \ 0$

Exercises

- What is (0xA1) ^ (0x13)?
 Ans: 0xB2
- What is (0xFF) ^ (0x13)?
 Ans: 0xEC
- Note how (1^b) is always ^b
 and how (0^b) is always b

YOUR TO-DOs

- Assignment #1
 - Due on Monday at 11:59 PM!!!
- Next week, we will discuss a few more Arithmetic topics and start exploring Assembly Language!

— Do your readings!

(again: found on the class website)

