
Binary	Arithmetic	

CS	64:	Computer	Organization	and	Design	Logic	
Lecture	#2	
Winter	2019	

	
Ziad	Matni,	Ph.D.	

Dept.	of	Computer	Science,	UCSB	

Administrative	Stuff	

•  The	class	is	still	full…	

•  Did	you	check	out	the	syllabus?	
•  Did	you	check	out	the	class	website?	
•  Did	you	check	out	Piazza	(and	get	access	to	it)?	
•  Did	you	go	to	lab	today?	
•  Do	you	understand	how	you	will	be	submitting	
your	assignments?	

1/10/19	 Matni,	CS64,	Wi19	 2	

Lecture	Outline	

•  Review	of	positional	notation,	binary	logic	
•  Bitwise	operations	
•  Bit	shift	operations	
•  Two’s	complement	
•  Addition	and	subtraction	in	binary	

1/10/19	 Matni,	CS64,	Wi19	 3	

2	
1/10/19	 Matni,	CS64,	Wi19	 4	

Counting	Numbers	in	Different	Bases	

•  We	“normally”	count	in	10s	
–  Base	10:	decimal	numbers	
– We	use	10	numerical	symbols	in	Base	10:	“0”	thru	“9”	

•  Computers	count	in	2s	
–  Base	2:	binary	numbers	
– We	use	2	numerical	symbols	in	Base	2:	“0”	and	“1”	

•  Represented	with	1	bit	(21	=	2)	
1/10/19	 Matni,	CS64,	Wi19	 5	

Counting	Numbers	in	Different	Bases	

Other	convenient	bases	in	computer	architecture:	
•  Base	8:	octal	numbers	

–  Number	symbols	are	0	thru	7		
–  Represented	with	3	bits	(23	=	8)	

•  Base	16:	hexadecimal	numbers	
–  Number	symbols	are	0	thru	F:	

	 	 	A	=	10,	B	=	11,	C	=	12,	D	=	13,	E	=	14,	F	=	15	
–  Represented	with	4	bits	(24	=	16)	

•  Why	are	4	bit	representations	convenient???	
1/10/19	 Matni,	CS64,	Wi19	 6	

What’s	in	a	Number?	

642	
	

What	is	that???	
	

Well,	what	NUMERICAL	BASE	are	you	expressing	it	in?	

1/10/19	 Matni,	CS64,	Wi19	 7	

Positional	Notation	of	Decimal	Numbers	

1/10/19	 Matni,	CS64,	Wi19	 8	

642	in	base	10	(decimal)	can	be	described	in		
“positional	notation”	as:	

	 				
															 				6	x	100			=	600	

						 															4	x	10					=	40	
																									2	x	1							=	2						=		642	in	base	10	

6	x	102	=		
+	4	x	101	=		
+	2	x	100	=		

6	 4	 2	
100	 10	 1	

642	(base	10)	=	600	+	40	+	2	

Numerical	Bases	and	Their	Symbols	

•  How	many	“symbols”	or	“digits”	do	we	use	in	
Decimal	(Base	10)?	

•  Base	2	(Binary)?	
•  Base	16	(Hexadecimal)?	

•  Base	N?	

1/10/19	 Matni,	CS64,	Wi19	 9	

Each	digit	gets	multiplied	by	BN	
	Where:	
	 	B	=	the	base	
	 	N	=	the	position	of	the	digit	

	
Example:	given	the	number	613	in	base	7:	
	
Number	in	decimal	=	6	x	72	+	1	x	71	+	3	x	70	=	304	
	

Positional	Notation	

1/10/19	 Matni,	CS64,	Wi19	 10	

This	is	how	you	convert	any	base	number	into	decimal!	

Positional	Notation	in	Binary	

1/10/19	 Matni,	CS64,	Wi19	 11	

11101 in base 2 positional notation is:

 1 x 24 = 1 x 16 = 16
 + 1 x 23 = 1 x 8 = 8
 + 1 x 22 = 1 x 4 = 4
 + 0 x 21 = 1 x 2 = 0
 + 1 x 20 = 1 x 1 = 1

So, 11101 in base 2 is 16 + 8 + 4+ 0 + 1 = 29 in base 10

Converting	Binary		
to	Octal	and	Hexadecimal	

(or	any	base	that’s	a	power	of	2)	
NOTE	THE	FOLLOWING:	
•  Binary	is		 	 	 	1	bit	
•  Octal	is	 	 	 	 	3	bits	
•  Hexadecimal	is		 	4	bits	

•  Use	the	“group	the	bits”	technique	
– Always	start	from	the	least	significant	digit	
– Group	every	3	bits	together	for	bin	à	oct	
– Group	every	4	bits	together	for	bin	à	hex	

1/10/19	 Matni,	CS64,	Wi19	 12	

Converting	Binary		
to	Octal	and	Hexadecimal	

•  Take	the	example:	10100110	
…to	octal:	
							1	0	1	0	0	1	1	0	
	
…to	hexadecimal:	
							1	0	1	0	0	1	1	0	
	

1/10/19	 Matni,	CS64,	Wi19	 13	

2	 4	 6	

10	 6	

246	in	octal	

A6	in	hexadecimal	

While (the quotient is not zero)
1.  Divide the decimal number by the new base
2.  Make the remainder the next digit to the left in the answer
3.  Replace the original decimal number with the quotient
4.  Repeat until your quotient is zero

Algorithm	for	converting	number	in	base	10	to	other	bases	

Converting	Decimal	to	Other	Bases	

Example:	What	is	98	(base	10)	in	base	8?	

	

98	/	8	=	12	R	2	

12	/	8	=	1	R	4	

1	/	8	=	0	R	1	

2	4	1	
1/10/19	 Matni,	CS64,	Wi19	 14	

In-Class	Exercise:	
Converting	Decimal	into	Binary	&	Hex	
Convert	54	(base	10)	into	binary	and	hex:	
•  54	/	2	=	27	R	0	
•  27	/	2	=	13	R	1	
•  13	/	2	=	6	R	1	
•  6	/	2	=	3	R	0	
•  3	/	2	=	1	R	1	
•  1	/	2	=	0	R	1	

54	(decimal)	=	110110	(binary)	
									=	36	(hex)	

1/10/19	 Matni,	CS64,	Wi19	 15	

Sanity	check:	
110110	
=	2	+	4	+	16	+	32	
=	54	

Convenient	Table…	
HEXADECIMAL	 BINARY	

	

0	 0000	

1	 0001	

2	 0010	

3	 0011	

4	 0100	

5	 0101	

6	 0110	

7	 0111	

8	 1000	

9	 1001	

1/10/19	 Matni,	CS64,	Wi19	 16	

HEXADECIMAL	
(Decimal)	

BINARY	

A	(10)	 1010	
B	(11)	 1011	
C	(12)	 1100	
D	(13)	 1101	
E	(14)	 1110	
F	(15)	 1111	

Always	Helpful	to	Know…	
N	 2N	

1	 2	
2	 4	
3	 8	
4	 16	
5	 32	
6	 64	
7	 128	
8	 256	
9	 512	
10	 1024	=	1	kilobits	

1/10/19	 Matni,	CS64,	Wi19	 17	

N	 2N	

11	 2048	=	2	kb	
12	 4	kb	
13	 8	kb	
14	 16	kb	
15	 32	kb	
16	 64	kb	
17	 128	kb	
18	 256	kb	
19	 512	kb	
20	 1024	kb	=	1	megabits	

N	 2N	

21	 2	Mb	
22	 4	Mb	
23	 8	Mb	
24	 16	Mb	
25	 32	Mb	
26	 64	Mb	
27	 128	Mb	
28	 256	Mb	
29	 512	Mb	
30	 1	Gb	

Binary	Logic	Refresher	
NOT,	AND,	OR	

X NOT	X	
X	

0 1	
1 0	

1/10/19	 Matni,	CS64,	Wi19	 18	

X Y X		OR	Y	
X	||	Y	
X	+	Y	

0 0 0	
0 1 1	
1 0 1	
1 1 1	

X Y X		AND		Y	
X	&&	Y	
X.Y	

0 0 0	
0 1 0	
1 0 0	
1 1 1	

Binary	Logic	Refresher	
Exclusive-OR	(XOR)	

1/10/19	 Matni,	CS64,	Wi19	 19	

X Y X		XOR	Y	
X	O	Y	

0 0 0	
0 1 1	
1 0 1	
1 1 0	

+	

The	output	is	“1”	only	if	the	inputs	are	opposite	

Bitwise	NOT	

•  Similar	to	logical	NOT	(!),	except	it	works	on	a	
bit-by-bit	manner	

•  In	C/C++,	it’s	denoted	by	a	tilde:		~	
	
	 	~(1001)	=	0110	

1/10/19	 Matni,	CS64,	Wi19	 20	

Exercises	

•  Sometimes	hexadecimal	numbers	are	written	
in	the	0xhh	notation,	so	for	example:	
	 	The	hex	3B	would	be	written	as	0x3B	

•  What	is	~(0x04)?	
– Ans:	0xFB	

•  What	is	~(0xE7)?	
– Ans:	0x18	

1/10/19	 Matni,	CS64,	Wi19	 21	

Bitwise	AND	

•  Similar	to	logical	AND	(&&),	except	it	works	on	a	
bit-by-bit	manner	

•  In	C/C++,	it’s	denoted	by	a	single	ampersand:	&		
	
(1001	&	0101)	=	1	0	0	1	
	 	 	 	 	 		&	0	1	0	1	

	
	 	 	 	 	 		=		0	0	0	1	

	
1/10/19	 Matni,	CS64,	Wi19	 22	

Exercises	

•  What	is	(0xFF)	&	(0x56)?	
–  Ans:	0x56	

•  What	is	(0x0F)	&	(0x56)?	
–  Ans:	0x06	

•  What	is	(0x11)	&	(0x56)?	
–  Ans:	0x10	

•  Note	how	&	can	be	used	as	a	“masking”	function	

1/10/19	 Matni,	CS64,	Wi19	 23	

Bitwise	OR	

•  Similar	to	logical	OR	(||),	except	it	works	on	a	bit-
by-bit	manner	

•  In	C/C++,	it’s	denoted	by	a	single	pipe:		|	
	
(1001	|	0101)	=	1	0	0	1	
	 	 	 	 	 		|	0	1	0	1	

	
	 	 	 	 	 		=		1	1	0	1	

	
1/10/19	 Matni,	CS64,	Wi19	 24	

Exercises	

•  What	is	(0xFF)	|	(0x92)?	
– Ans:	0xFF	

•  What	is	(0xAA)	|	(0x55)?	
– Ans:	0xFF	

•  What	is	(0xA5)	|	(0x92)?	
– Ans:	B7	

1/10/19	 Matni,	CS64,	Wi19	 25	

Bitwise	XOR	

•  Works	on	a	bit-by-bit	manner	

•  In	C/C++,	it’s	denoted	by	a	single	carat:		^	
	
(1001	^	0101)	=		1	0	0	1	
	 	 	 	 	 		^		0	1	0	1	

	
	 	 	 	 	 			=	1	1	0	0	

	
1/10/19	 Matni,	CS64,	Wi19	 26	

Exercises	

•  What	is	(0xA1)	^	(0x13)?	
– Ans:	0xB2	

•  What	is	(0xFF)	^	(0x13)?	
– Ans:	0xEC	

•  Note	how	(1^b)	is	always	~b	
and			how	(0^b)	is	always	b	

1/10/19	 Matni,	CS64,	Wi19	 27	

YOUR	TO-DOs	

•  Assignment	#1	
– Due	on	Monday	at	11:59	PM!!!	

•  Next	week,	we	will	discuss	a	few	more	
Arithmetic	topics	and	start	exploring	
Assembly	Language!	
– Do	your	readings!		

	 	 	 	(again:	found	on	the	class	website)	

1/11/19	 Matni,	CS64,	Wi19	 28	

1/11/19	 Matni,	CS64,	Wi19	 29	

