
University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Midterm	 	 Dept.	of	Computer	Science	

1	
©	Ziad	Matni,	2019	

Practice Questions (and Answers) for Midterm Exam
CS 64, Winter 2019, Matni

IMPORTANT NOTE: These questions are NOT representative of EVERYTHING you need to study for
the midterm exam! You should also review your lab assignments questions and also all the examples and
demos done in class.

A. Data Representation
1. Convert the following decimal numbers into signed 8-bit binary and two-digit hexadecimal.

a. 39
b. 104
c. -59
d. -98

2. Convert the following hexadecimal numbers into decimal.

a. 0x46
b. 0x1D
c. 0x3F2

3. Convert these unsigned binary numbers into decimal.

a. 1010
b. 10101010
c. 11000001

4. Convert these signed binary numbers into decimal.

a. 1010
b. 00110100
c. 11000001

5. In 5 bits, what is the most negative value and the most positive value representable in signed

form, using two's complement? Express your answers in both binary and decimal.

6. Same question as #5, but representable in unsigned form?

7. Suppose you are given the following 4-bit binary number, shown in two's complement: 1001
You're not told whether or not the number is signed or unsigned. Is this information important in
knowing what the value of the number is, in decimal? That is, do you need to know if it's signed
or unsigned to say what the decimal value is? Why or why not?

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Midterm	 	 Dept.	of	Computer	Science	

2	
©	Ziad	Matni,	2019	

B. Binary Arithmetic
8. Perform the following two's complement addition, noting whether or not the carry bit (C) and/or

the overflow bit (V) get set: 01111111 + 11111111

9. Perform the following two's complement addition, noting whether or not the carry bit (C) and/or
the overflow bit (V) get set: 00100101 + 10110111

10. Perform the following two's complement addition, noting whether or not the carry bit (C) and/or
the overflow bit (V) get set: 11100101 + 10000000

C. Bitwise Operations
11. Given the hexadecimals X and Y in each of the following below, find: X & Y, X | Y, and X ^ Y.

Give your answers in hexadecimal.
a. X = 0x2D, Y = 0xFE
b. X = 0x67, Y = 0x67
c. X = 0x4A, Y = 0x91

12. Consider the following C code, which is intended to extract the next 7 bits of the given input i,

leaving the bits in their original position:

int	unsignedBits7through13(int	i)	{	

		return	__________;	

}	

Fill in the blank with a single bitwise expression which will make the code do what it is intended
to do.

13. Consider the following C code, which is intended to extract the next 7 bits of the given input i,
treating the result as a signed value, putting the bits in the rightmost position:

int	signedBits7through13(int	i)	{	

		//	Some	lines	of	code	here			

		return	u;	

}	

Fill in the empty part with valid C/C++ code (can be multiple lines) which will make the code do
what it is intended to do.

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Midterm	 	 Dept.	of	Computer	Science	

3	
©	Ziad	Matni,	2019	

D. Assembly
14. Why isn't li an actual MIPS instruction?

15. Translate the following C code into MIPS assembly. Where <<read integer from the user>> is

used, you should use special functionality provided by SPIM to read in an integer from the
console. Where <<print integer s1>> is used, you should use special functionality provided by
SPIM to print the integer stored in s1 to the console. The variables used below should be placed
in the register with the same name. For example, variable s0 should be placed in register $s0. If
you need additional registers than what the code below uses, use registers $t0 - $t9. You do not
need to exit the program properly.

int	s0	=	<<read	integer	from	the	user>>;	
int	s1	=	2;			
if	(s0	<	7)	{	
		s1	=	3;	
}	else	{	
		s1	=	s0	+	s0;	
}										
<<print	integer	s1>>	

16. Write an entire assembly program that takes an integer from standard input (i.e. the user) and
checks to see if it is a 0, or 1, or 2 (assume the user behaves and only enters one of these 3
numbers and you do not have to check if they do otherwise). The program then prints to the
standard output the text “zero”, or “one”, or “two”, as the appropriate case may be. This has to be
followed by a newline character. Bonus points if you can do this using only 2 branch statements.

17. What is the machine code (in hexadecimal) for these instructions?
a. add	$a0,	$s3,	$a1	
b. andi	$t2,	$t2,	119	

18. Given the C++ function described below:

int	thatone(int	num1,	int	num2)	{	
	 ans	=	4*num1	+	2*num2;	

return	(ans);	
}

a. Which registers would you use for num1, num2, and ans?
b. What assembly instruction would you have at the end of the function?
c. What assembly instruction would you have in the code where the function is called?

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Midterm	 	 Dept.	of	Computer	Science	

4	
©	Ziad	Matni,	2019	

ANSWERS:

A. Data Representation
1.

a. 00100111, 0x27
b. 01101000, 0x68
c. 11000101, 0xC5
d. 10011110, 0x9E

2.
a. 70
b. 29
c. 1010

3.
a. 10
b. 170
c. 193.

4.
a. -6
b. 52
c. -63

5. Most negative: 10000, -16. Most positive: 01111, 15.

6. You cannot represent negative numbers with unsigned binaries. Most positive: 11111, 31.

7. We know it's signed because it's in two's complement. If we hadn't been told it was two's

complement, then because of the left-most bit being a 1, we would be unable to determine the
value of the number unless more information was given. This is because the left-most bit would
make it a negative number if the number was signed, and a different positive number if the
number was unsigned.

B. Binary Arithmetic
8. 01111111

+11111111

 01111110
The carry bit gets set (i.e. C = 1, V = 0)

9. 00100101
+10110111

 11011100
Neither gets set (i.e. C = 0, V = 0)

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Midterm	 	 Dept.	of	Computer	Science	

5	
©	Ziad	Matni,	2019	

10. 11100101
+10000000

 01100101
Both get set (i.e. C = 1, V = 1)

C. Bitwise Operations
11.

a. 0x2C, 0xFF, 0xD3
b. 0x67, 0x67, 0x00
c. 0x00, 0xDB, 0xDB

12. (i & 0x00003F80)

13. int	signedBits7through13(int	i)	{

		int	u	=	(i	&	0x00003F80)	>>	7;	
		if	(u	&	0x00000040)	{	
				u	|=	0xFFFFFF80;	
		}	
		return	u;	
}	
	

D. Assembly
14. All MIPS instructions are exactly 32 bits large. li can be used to load a 32 bit constant into a

register. Therein lies a problem: the constant's entire value couldn't possibly be held in a single
instruction, because there aren't enough bits (in addition to the 32 bits of the constant, there would
need to be other bits to encode what the instruction is, which requires in total more than 32 bits).
It is for this reason that li is a psuedoinstruction which can be automatically translated to multiple
instructions, whenever we need to specify a constant using the full 32 bits.

15.
main:	

			 #	read	in	the	integer	from	the	user,	and	initialize	s1	
		li	$v0,	5	
		syscall	
		move	$s0,	$v0	
		li	$s1,	2	
	
		#	check	if	$s0	<	7	
		li	$t0,	7	
		slt	$t1,	$s0,	$t0	
	
		#	jump	to	the	else	branch	if	this	isn't	true	
		beq	$t1,	$zero,	else_branch																		
	
		#	fall	through	to	the	true	branch	
		li	$s1,	3																			
		j	print	
	
else_branch:	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Midterm	 	 Dept.	of	Computer	Science	

6	
©	Ziad	Matni,	2019	

		add	$s1,	$s0,	$s0	
		#	fall	through	to	the	print	
	
print:	
		li	$v0,	1	
		move	$a0,	$s1																			
		syscall	

16.
.data	
zero:	.asciiz	"zero\n"	
one:	.asciiz	"one\n"	
two:	.asciiz	"two\n"	
	
.text	
main:	
				#	Get	user	standard	input	
				li	$v0,	5	
				syscall	
				move	$s0,	$v0	
	
				li	$t0,	0	
				li	$t1,	1	
				li	$t2,	2	
	
				#	Assume	that	input	is	0	
				#	Check	to	see	if	input	is	1	or	2	and	branch	accordingly	
				beq	$s0,	$t1,	print1	
				beq	$s0,	$t2,	print2	
	
				#	Print	"zero"	
				li	$v0,	4	
				la	$a0,	zero	
				syscall	
				j	end	
	
print1:	#	Print	"one"	
				li	$v0,	4	
				la	$a0,	one	
				syscall	
				j	end	
	
print2:	#	Print	"two"	
				li	$v0,	4	
				la	$a0,	two	
				syscall	
	
end:	
				li	$v0,	10	
				syscall	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Midterm	 	 Dept.	of	Computer	Science	

7	
©	Ziad	Matni,	2019	

17.
a. 0x02652020
b. 0x314A0077

18.

a. $a0 for num1, $a1 for num2, $v0 for ans
b. jr $ra
c. jal thatone

