Practice Questions (and Answers) for Final Exam

CS 64, Winter 2019, Matni
IMPORTANT NOTE: These questions are NOT representative of EVERYTHING you need to study for the midterm exam! You should also review your lab assignments questions and also all the examples and demos done in class.

1. Binary-to-decimal/hexadecimal conversion
a. Convert 1001001011000011 to 4-digit hexadecimal
b. Convert the signed binary value 10011111 to decimal
2. Add the $\mathbf{2}$ following 8-bit numbers: $\mathbf{0 1 1 0 0 0 1 0}$ and $\mathbf{0 0 1 1} \mathbf{0 1 0 0}$ and indicate the status of the carry and overflow bits at the end of the addition. Interpret your findings.
3. Name one reason why li is a MIPS pseudoinstruction.
4. Translate this MIPS assembly code into C/C++ code.
.data
talk: .asciiz "blabla"
cs: .word 3
.text
main:
li \$t0, 5
la \$t1, cs
lw \$t2, 0(\$t1)
blt \$t0, \$t2, gothere
li \$v0, 4
la \$a0, talk
syscall
j end
gothere:
li \$v0, 4
la \$a0, talk
syscall
syscall
end:
li \$v0, 10
syscall
5. Write the following MIPS instructions in machine-language hexadecimals (show all work): addiu \$t0, \$s0, 17 and sub \$v0, \$s4, \$t5
6. Given a MIPS machine language instruction of 0x02088024, and being told that it is an R-type, what is the assembly instruction?
7. What will the final value in register $\$ \mathbf{S} 0$ in this code be?
li \$s0, 20
sll \$s0, \$s0, 2
add \$s0, \$s0, \$s0
sra \$s0, \$s0, 4
8. Consider the C/C++ code below:
// arr is a globally accessible array of ints
// s0 already holds a value of type unsigned int
unsigned int s1 = arr[s0];
unsigned int s2 $=\operatorname{arr}[s 0-1]$;
unsigned int $s 3=\operatorname{arr}[s 0+1]$;
Using no more than six instructions, implement the above code snippet in MIPS. You don't have to follow the MIPS Calling Convention.
9. Consider the C/C++ code below.
```
int sum( int arr[], int size )
{
    if ( size == 0 )
        return 0;
    else
        return sum( arr, size - 1 ) + arr[size - 1];
}
```

a. Knowing that you have to follow the MIPS Calling Convention, which variables should be preserved either directly (via the stack) or indirectly (in an S-register) in order to maintain the intended program behavior?
b. Implement the previously shown C/C++ code using MIPS assembly, taking care to preserve the values you identified previously. Ignore the .data part and just focus on the .text part of the program.
10. Show how a NOR function can be used as an AND function.
11. Simplify this expression using Boolean algebra: $\mathbf{F}=\mathbf{N O T}((A$ NOR B) $\cdot(\mathbf{C}+\mathbf{A} \cdot \mathrm{B}))$ and draw the resulting circuit.
12. Consider the following truth table, which includes don't cares:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{R}
0	0	0	0	1
0	0	0	1	0
0	0	1	0	X
0	0	1	1	0
0	1	0	0	X
0	1	0	1	1
0	1	1	0	X
0	1	1	1	X
1	0	0	0	X
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	1
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Simplify the output function \mathbf{R} using a Karnaugh Map, and show the resulting sum-ofproducts representation. Show the map, along with the boxes you chose. For full credit, both the number of ORs (+) and the sizes of the products must be minimal.
13. Consider this circuit:

What does the output \mathbf{Z} do with the following values of A, B, and C (suppose that these values happen in sequence: that is one after the other as shown in the table). Also explain why:

A	B	C	Z	Reason
0	0	1		
1	1	0		
0	0	0		
1	0	0		
1	0	1		

14. Consider a device that consists of three buttons labeled "UP" and "RESET", along with a light. The device internally counts the number of times "UP" is pressed, and when it is pressed two times, the device causes the light to illuminate. Additional presses of "UP" do nothing. Pressing "RESET" at any point will reset the internal counter back to zero, and will cause the light to go out. (Note that the light may have already been off, as when the user presses "UP" once followed by "RESET".)

For this question, you will implement this device as a finite state machine. The machine has the following two external inputs:
R : set to 1 whenever "RESET" is pressed
U : set to 1 whenever "UP" is pressed
The machine also has one external output:
L: set to 1 whenever the light should be illuminated If both "RESET" and "UP" are pressed at the same time, then the behavior should be as if only "RESET" was pressed. Basically, if R is set, no matter what state you are in, you go back to the initial state.
a) Draw the finite state machine diagram corresponding to this task. All transitions should be drawn as products of R and U. For example, if a particular transition should be taken only if $R=1$ and $U=0$, then this should be drawn as $R . \bar{U}$ or $R .!U$.
b) Using the "regular" method, how many D-FFs are necessary to implement this state machine? Draw the truth table for all 3 states, showing current state bits, input bits R and U , next state bits, and output bit L .
c) Using K-Maps, write the optimal functions for the next state bits and the output.
d) If we use the "one-hot method" instead, how many D-FFs are necessary to implement this state machine? Write all the logic formulas that describe all the states, as well as the output L.
15. Consider the following digital circuit:

a) Write the expression for the next-state bit F_{0} as a sum-of-product.
b) Assuming that F_{0} is initially 0 , complete the timing diagram for F_{0} based on your answer above. Make your drawing as accurate as you can. Hint: Draw the waveform to the input of the DFF as well as any other intermediate nodes/places in the circuit.

F_{0}

ANSWERS TO THE REVIEW QUESTIONS FOR FINAL EXAM

1.

a. $1001001011000011 / \mathrm{bin}=0 \times 92 \mathrm{C} 3$
b. $10011111 / b$ in $\rightarrow 01100000+1=01100001=-\left(2^{6}+2^{5}+1\right)=-97$
2. 01100010
$+\underline{00110100}$
10010110
The carry out bit $=0$, the overflow bit is 1 .
So, if these were 2 unsigned numbers, there would be no carry out, but if these were 2 signed numbers, then we'd have overflow.
3. li takes as second argument a 32-bit signed number. MIPS instructions themselves are 32bit long, so loading this number into a register should actually be done in pieces: first load the upper 16 -bits of the number, then load the lower 16 -bits. Therefore the instruction 1 i is really a macro for (at least) 2 regular instructions - i.e. it's pseudocode.
4. $\ln \mathrm{C} / \mathrm{C}++$:
char talk[] = "blabla";
int cs = 6;
int t0 = 5;
if (t0 >= cs) \{ printf(talk); \}
else \{ printf(talk); printf(talk); \}
5. addiu \$t0, \$s0, $17=0 \times 26080011$
sub \$v0, \$s4, \$t5 = 0x028D1022
6. $0 \times 02088024=$ and $\$ s 0, \$ s 0, \$ t 0$
7. $\$ s 0=20 \rightarrow$ This is in decimal. So it's $0000 \ldots 00010100$ (in 32-bit binary)
sll \$s0, \$s0, $2 \rightarrow$ \$s0 becomes $0000 \ldots 01010000$
add \$s0, \$s0, \$s0 $\quad \rightarrow$ \$s0 becomes 0000 ... 10100000
sra $\$ \mathrm{~s} 0, \$ \mathrm{~s} 0,4 \quad \rightarrow \$ \mathrm{~s} 0$ becomes $0000 \ldots 00001010=10 / \mathrm{dec}$
8. In 6 or under instructions:
la \$t0, arr
sll \$s0, \$s0, 2
addu \$t0, \$t0, \$s0
lw \$s1, 0(\$t0)
lw \$s2, -4(\$t0)
lw \$s3, 4(\$t0)
9. We assume arr is in $\$ \mathrm{a} 0$ and size is in $\$ \mathrm{a} 1$.

```
.text
sum:
    addiu \$sp, \$sp, -12 \# PUSH
    sw \$ra, 8(\$sp)
    sw \$s1, 4(\$sp)
    sw \$s0, \(0(\$ \mathrm{sp})\)
```

```
int sum( int arr[], int size ) {
```

int sum(int arr[], int size) {
if (size == 0)
if (size == 0)
return 0;
return 0;
else
else
return sum(arr, size-1) + arr[size-1]; }
return sum(arr, size-1) + arr[size-1]; }
li \$v0, 0
beq \$a1, \$zero, return \# is size !=0?
addi \$a1, \$a1, -1 \# size is now: size - 1
move \$s0, \$a0 \# preserve \&a0
move \$s1, \$a1 \# preserve a1 (size)
jal sum \# recursive call
sll \$s1, \$s1, $2 \quad \#$ multiply size by 4
add $\$ \mathrm{~s} 0, \$ \mathrm{~s} 0, \$ \mathrm{~s} 1 \quad \#$ s0 is now the address of a[size-1]
lw \$t0, 0(\$s0) \# Get that array element
add \$v0, \$v0, \$t0 \# add it to \$v0
return:
lw \$ra, 8(\$sp) \# POP
lw \$s1, 4(\$sp)
lw \$s0, 0(\$sp)
addiu \$sp, \$sp, 12
jr \$ra
main:
la \$a0, arr \# a0 = \&a[]
li \$a1, $4 \quad \#$ a1 = size
jal sum
exit:
li \$v0, 10
syscall

```
10. Taking advantage of DeMorgan's theorm, you will not that if the inputs to the NOR are inverted, you get: \(\mathrm{F}=\operatorname{NOT}(\overline{\mathrm{A}}+\overline{\mathrm{B}})=\mathrm{A} . \mathrm{B}\)
11. \(F=\operatorname{NOT}((A\) NOR \(B) \cdot(C+A \cdot B))\)
\[
\begin{aligned}
& =\operatorname{NOT}((\bar{A} \cdot \bar{B}) \cdot(C+A \cdot B)) \\
& =\operatorname{NOT}(\bar{A} \cdot \bar{B} \cdot C+\bar{A} \cdot \bar{B} \cdot A \cdot B) \\
& =\operatorname{NOT}(\bar{A} \cdot \bar{B} \cdot C) \\
& =A+B+\bar{C}
\end{aligned}
\]

12. K-Map:
\begin{tabular}{|l|r|r|r|r|}
\hline \begin{tabular}{l} 
CD \\
\(\mathbf{A B}\)
\end{tabular} & \(\mathbf{0 0}\) & \(\mathbf{0 1}\) & \(\mathbf{1 1}\) & \(\mathbf{1 0}\) \\
\hline \(\mathbf{0 0}\) & 1 & X & 1 & X \\
\hline \(\mathbf{0 1}\) & & 1 & X & \\
\hline \(\mathbf{1 1}\) & & X & X & X \\
\hline \(\mathbf{1 0}\) & X & X & X & 1 \\
\hline
\end{tabular}

Since X's can be either 0 or 1, to maximize the size of our groupings and minimize the number of our groupings, we can transform the above to the following with 2 major
groupings:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{C D} \backslash \mathbf{A B}\) & \(\mathbf{0 0}\) & \(\mathbf{0 1}\) & \(\mathbf{1 1}\) & \(\mathbf{1 0}\) \\
\hline \(\mathbf{0 0}\) & 1 & \(\Gamma\) & \(1^{-}\) & -1 & 1 \\
\hline \(\mathbf{0 1}\) & & 1 & 1 & \\
\hline \(\mathbf{1 1}\) & & 1 & 1 & 0 \\
\hline \(\mathbf{1 0}\) & 1 & 1 & 1 & 1 & \(\mathbf{1}\) \\
\hline
\end{tabular}

This gives us the formula: \(\mathbf{F}=\overline{\mathbf{D}}+\mathbf{B}\)
NOTE: I purposely made one of the Xs into a 0 , so that I could minimize my groupings.
13.
\begin{tabular}{|l|l|l|l|l|}
\hline A & B & C & \(\mathbf{Z}\) & Reason \\
\hline 0 & 0 & 1 & 0 & D-latch is enabled \((E=1) . D=0\), so \(Q=0\). \\
\hline 1 & 1 & 0 & 1 & D-latch is enabled \((E=1) . D=1\), so \(Q=1\). \\
\hline 0 & 0 & 0 & 1 & D-latch is not enabled ( \(E=0)\). so \(Q=Q_{\text {old }}=1\). \\
\hline 1 & 0 & 0 & 1 & D-latch is not enabled \((E=0)\). So \(Q=Q_{\text {old }}=1\). \\
\hline 1 & 0 & 1 & 0 & D-latch is enabled ( \(E=1) . D=0\), so \(Q=0\). \\
\hline
\end{tabular}
14. State diagram:
a.

b. We'd need 2 bits (so 2 DFFs): B1 and B0.
\(S 0\) would be \(\mathrm{B} 1 \mathrm{BO}=00, \mathrm{~S} 2\) would be \(01, \mathrm{~S} 3\) would be 10 . The combination of \(B 1 B 0=11\) is undefined.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline B1 & B0 & U & R & B1 \(^{*}\) & B0 \(^{*}\) & \(\mathbf{L}\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
\hline 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
\hline 1 & 0 & \(X\) & 0 & 1 & 0 & 1 \\
\hline\(X\) & \(X\) & \(X\) & 1 & 0 & 0 & 0 \\
\hline
\end{tabular}
c. K-Maps:
For B1*:
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l} 
B1BO \\
\(U R\)
\end{tabular} & 00 & 01 & 11 & 10 \\
\hline 00 & & & & 1 \\
\hline 01 & & & & \\
\hline 11 & & & & \\
\hline 10 & & 1 & & 1 \\
\hline
\end{tabular}

For BO*:
\begin{tabular}{|l|l|l|l|}
\hline 00 & 01 & 11 & 10 \\
\hline & 1 & & \\
\hline & & & \\
\hline & & & \\
\hline 1 & & & \\
\hline
\end{tabular}

For L:
\begin{tabular}{|l|l|l|l|}
\hline 00 & 01 & 11 & 10 \\
\hline & & & 1 \\
\hline & & & \\
\hline & & & \\
\hline & & & 1 \\
\hline
\end{tabular}
\(B 1^{*}=!B 1 . B 0 . U .!\mathrm{R}+\mathrm{B} 1 .!\mathrm{BO} \cdot!\mathrm{R}\)
\(B 0^{*}=\) !B1.B0.!U.!R + !B1.!B0.U.!R
L = B1.!B0.!R
d. Using the one hot method, we'd need 3 DFFs - one for every state. The formulas for each state and the output would be:
\(S O^{*}=R+S O . \bar{U} . \bar{R}\)
S1* \(=\) SO.U. \(\bar{R}+\) S1. \(\bar{U} . \bar{R}\)
S2* \(=\) S1.U. \(\bar{R}+S 2 . \bar{R}\)
L = S2
15.
a. \(\quad F_{0}=!(X . Y) X O R Z=(X . Y) \cdot Z+!(X . Y) .!Z=X Y Z+!X!Z+!Y!Z\)
b.
```

