
University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	1	
	

Practice Questions (and Answers) for Final Exam
CS 64, Winter 2019, Matni

IMPORTANT	NOTE:	These	questions	are	NOT	representative	of	EVERYTHING	you	need	to	study	
for	the	midterm	exam!	You	should	also	review	your	lab	assignments	questions	and	also	all	the	
examples	and	demos	done	in	class.	

1. Binary-to-decimal/hexadecimal	conversion	
a. Convert	1001	0010	1100	0011	to	4-digit	hexadecimal	
b. Convert	the	signed	binary	value	1001	1111	to	decimal	

	
2. Add	the	2	following	8-bit	numbers:	0110	0010	and	0011	0100	and	indicate	the	status	of	

the	carry	and	overflow	bits	at	the	end	of	the	addition.	Interpret	your	findings.	
	

3. Name	one	reason	why	li	is	a	MIPS	pseudoinstruction.	
	

4. Translate	this	MIPS	assembly	code	into	C/C++	code.	
	

.data	
talk:	.asciiz	"blabla"	
cs:	.word	3	
.text	
main:	
				li	$t0,	5	
				la	$t1,	cs	
				lw	$t2,	0($t1)	
				blt	$t0,	$t2,	gothere	
				li	$v0,	4	
				la	$a0,	talk	
				syscall	
				j	end	
gothere:	
				li	$v0,	4	
				la	$a0,	talk	
				syscall	
				syscall	
end:	
				li	$v0,	10	
				syscall	

	
5. Write	the	following	MIPS	instructions	in	machine-language	hexadecimals	(show	all	

work):	addiu	$t0,	$s0,	17	and	sub	$v0,	$s4,	$t5	
	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	2	
	

6. Given	a	MIPS	machine	language	instruction	of	0x02088024,	and	being	told	that	it	is	an	
R-type,	what	is	the	assembly	instruction?	
	

7. What	will	the	final	value	in	register	$s0	in	this	code	be?	
	

li	$s0,	20	
sll	$s0,	$s0,	2	
add	$s0,	$s0,	$s0	
sra	$s0,	$s0,	4	

	
8. Consider	the	C/C++	code	below:	

	
//	arr	is	a	globally	accessible	array	of	ints	
//	s0	already	holds	a	value	of	type	unsigned	int	
unsigned	int	s1	=	arr[s0];	
unsigned	int	s2	=	arr[s0	-	1];	
unsigned	int	s3	=	arr[s0	+	1];	
	
Using	no	more	than	six	instructions,	implement	the	above	code	snippet	in	MIPS.	You	don’t	
have	to	follow	the	MIPS	Calling	Convention.	

	
9. Consider	the	C/C++	code	below.	

	
int	sum(int	arr[],	int	size)		
{	
			if	(size	==	0)	
						return	0;	
			else	
						return	sum(arr,	size	-	1)	+	arr[size	–	1];		
}	
	
a.		 Knowing	that	you	have	to	follow	the	MIPS	Calling	Convention,	which	variables	should	
be	preserved	either	directly	(via	the	stack)	or	indirectly	(in	an	S-register)	in	order	to	
maintain	the	intended	program	behavior?	
	
b.	 Implement	the	previously	shown	C/C++	code	using	MIPS	assembly,	taking	care	to	
preserve	the	values	you	identified	previously.	Ignore	the	.data	part	and	just	focus	on	the	
.text	part	of	the	program.	

	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	3	
	

10. Show	how	a	NOR	function	can	be	used	as	an	AND	function.	
	

11. Simplify	this	expression	using	Boolean	algebra:		F	=	NOT	((A	NOR	B)	.	(C	+	A.B))	and	draw	
the	resulting	circuit.	

12. Consider	the	following	truth	table,	which	includes	don’t	cares:	
	

A	 B	 C	 D	 R	
0	 0	 0	 0	 1	
0	 0	 0	 1	 0	
0	 0	 1	 0	 X	
0	 0	 1	 1	 0	
0	 1	 0	 0	 X	
0	 1	 0	 1	 1	
0	 1	 1	 0	 X	
0	 1	 1	 1	 X	
1	 0	 0	 0	 X	
1	 0	 0	 1	 0	
1	 0	 1	 0	 1	
1	 0	 1	 1	 X	
1	 1	 0	 0	 1	
1	 1	 0	 1	 X	
1	 1	 1	 0	 X	
1	 1	 1	 1	 X	
	
Simplify	the	output	function	R	using	a	Karnaugh	Map,	and	show	the	resulting	sum-of-
products	representation.	Show	the	map,	along	with	the	boxes	you	chose.	For	full	credit,	
both	the	number	of	ORs	(+)	and	the	sizes	of	the	products	must	be	minimal.	

13. Consider	this	circuit:	

	
What	does	the	output	Z	do	with	the	following	values	of	A,	B,	and	C	(suppose	that	these	
values	happen	in	sequence:	that	is	one	after	the	other	as	shown	in	the	table).	Also	
explain	why:	
A	 B	 C	 Z	 Reason	
0	 0	 1	 	 	
1	 1	 0	 	 	
0	 0	 0	 	 	
1	 0	 0	 	 	
1	 0	 1	 	 	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	4	
	

14. Consider	a	device	that	consists	of	three	buttons	labeled	“UP”	and	“RESET”,	along	with	a	
light.	The	device	internally	counts	the	number	of	times	“UP”	is	pressed,	and	when	it	is	
pressed	two	times,	the	device	causes	the	light	to	illuminate.	Additional	presses	of	“UP”	do	
nothing.	Pressing	“RESET”	at	any	point	will	reset	the	internal	counter	back	to	zero,	and	will	
cause	the	light	to	go	out.	(Note	that	the	light	may	have	already	been	off,	as	when	the	user	
presses	“UP”	once	followed	by	“RESET”.)	
	
For	this	question,	you	will	implement	this	device	as	a	finite	state	machine.	The	machine	has	
the	following	two	external	inputs:	

R:	set	to	1	whenever	“RESET”	is	pressed	
U:	set	to	1	whenever	“UP”	is	pressed	

The	machine	also	has	one	external	output:	
L:	set	to	1	whenever	the	light	should	be	illuminated	

If	both	“RESET”	and	“UP”	are	pressed	at	the	same	time,	then	the	behavior	should	be	as	if	
only	“RESET”	was	pressed.	Basically,	if	R	is	set,	no	matter	what	state	you	are	in,	you	go	back	
to	the	initial	state.	
	
a) Draw	the	finite	state	machine	diagram	corresponding	to	this	task.	All	transitions	should	

be	drawn	as	products	of	R	and	U.	For	example,	if	a	particular	transition	should	be	taken	
only	if	R	=	1	and	U	=	0,	then	this	should	be	drawn	as	R.U# 	or	R.!U.	
	

b) Using	the	“regular”	method,	how	many	D-FFs	are	necessary	to	implement	this	state	
machine?	Draw	the	truth	table	for	all	3	states,	showing	current	state	bits,	input	bits	R	
and	U,	next	state	bits,	and	output	bit	L.	

	
c) Using	K-Maps,	write	the	optimal	functions	for	the	next	state	bits	and	the	output.	

	
d) If	we	use	the	“one-hot	method”	instead,	how	many	D-FFs	are	necessary	to	implement	

this	state	machine?	Write	all	the	logic	formulas	that	describe	all	the	states,	as	well	as	
the	output	L.	

	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	5	
	

15. Consider the following digital circuit:

a) Write the expression for the next-state bit F0 as a sum-of-product.
b) Assuming that F0 is initially 0, complete the timing diagram for F0 based on your

answer above. Make your drawing as accurate as you can. Hint: Draw the
waveform to the input of the DFF as well as any other intermediate nodes/places
in the circuit.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	

***	TO	GET	THE	MOST	OUT	OF	THIS	REVIEW,	DO	THE	QUESTIONS	FIRST	BEFORE	LOOKING	AT	
THE	ANSWERS!***	

	
	
	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	6	
	

ANSWERS	TO	THE	REVIEW	QUESTIONS	FOR	FINAL	EXAM	
1. 	
a. 1001	0010	1100	0011	/bin	=	0x92C3		
b. 1001	1111	/bin	à	0110	0000	+	1	=	0110	0001	=	–(26	+	25	+	1)	=	-97	

	
2. 			0110	0010		

+	0011	0100	
			1001	0110	
The	carry	out	bit	=	0,	the	overflow	bit	is	1.	
So,	if	these	were	2	unsigned	numbers,	there	would	be	no	carry	out,	but	if	these	were	2	
signed	numbers,	then	we’d	have	overflow.	
	

3. li	takes	as	second	argument	a	32-bit	signed	number.	MIPS	instructions	themselves	are	32-
bit	long,	so	loading	this	number	into	a	register	should	actually	be	done	in	pieces:	first	load	
the	upper	16-bits	of	the	number,	then	load	the	lower	16-bits.	Therefore	the	instruction	li	
is	really	a	macro	for	(at	least)	2	regular	instructions	–	i.e.	it’s	pseudocode.	
	

4. 	In	C/C++:	
char	talk[]	=	“blabla”;	
int	cs	=	6;	
int	t0	=	5;	
if	(t0	>=	cs)	{	printf(talk);	}	
else	{	printf(talk);	printf(talk);	}	
	

5. addiu	$t0,	$s0,	17		=	0x26080011	
sub	$v0,	$s4,	$t5		=	0x028D1022	
	

6. 0x02088024		 =		 and	$s0,	$s0,	$t0		
	
7. $s0	=	20		 	 	 à	This	is	in	decimal.	So	it’s	0000	…	0001	0100	(in	32-bit	binary)	

sll	$s0,	$s0,	2	 	 à	$s0	becomes	0000	…	0101	0000	
add	$s0,	$s0,	$s0	 	 à	$s0	becomes	0000	…	1010	0000	
sra	$s0,	$s0,	4	 	 à	$s0	becomes	0000	…	0000	1010	=	10	/dec	
	

8. In	6	or	under	instructions:	
	
la	$t0,	arr	
sll	$s0,	$s0,	2	
addu	$t0,	$t0,	$s0	
lw	$s1,	0($t0)	
lw	$s2,	-4($t0)	
lw	$s3,	4($t0)	
	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	7	
	

9. We	assume	arr	is	in	$a0	and	size	is	in	$a1.	
	
.text	
sum:	
				addiu	$sp,	$sp,	-12	#	PUSH	
				sw	$ra,	8($sp)	
				sw	$s1,	4($sp)	
				sw	$s0,	0($sp)	
	
				li	$v0,	0	
				beq	$a1,	$zero,	return				#	is	size	!=0?	
	
				addi	$a1,	$a1,	-1			#	size	is	now:	size	-	1	
				move	$s0,	$a0							#	preserve	&a0	
				move	$s1,	$a1							#	preserve	a1	(size)	
	
				jal	sum													#	recursive	call	
	
				sll	$s1,	$s1,	2					#	multiply	size	by	4	
				add	$s0,	$s0,	$s1			#	s0	is	now	the	address	of	a[size-1]	
	
				lw	$t0,	0($s0)						#	Get	that	array	element	
				add	$v0,	$v0,	$t0			#	add	it	to	$v0	
	
return:	
				lw	$ra,	8($sp)						#	POP	
				lw	$s1,	4($sp)	
				lw	$s0,	0($sp)	
				addiu	$sp,	$sp,	12	
				jr	$ra	
	
main:	
				la	$a0,	arr					#	a0	=	&a[]	
				li	$a1,	4							#	a1	=	size	
	
				jal	sum	
	
exit:	
				li	$v0,	10	
				syscall	
	
	

10. Taking	advantage	of	DeMorgan’s	theorm,	you	will	not	that	if	the	inputs	to	the	NOR	are	
inverted,	you	get:	F	=	NOT(A+	+	B+)	=	A.B	
	

int	sum(int	arr[],	int	size)	{	
			if	(size	==	0)	
						return	0	;	
			else	
						return	sum(arr,	size	-	1)	+	arr[size-1];	}	
	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	8	
	

11. F	=	NOT	((A	NOR	B)	.	(C	+	A.B))		
			=	NOT	((A(.	B()	.	(C	+	A.B))	
			=	NOT	(A(.	B(.	C	+	A(.	B(.	A	.	B)		
			=	NOT	(A(.	B(.	C)	
			=	A	+	B	+	C'		
	

12. K-Map:	
CD	\	
AB	

00	 01	 11	 10	

00	 1	 X	 1	 X	
01	 	 1	 X	 	
11	 	 X	 X	 X	
10	 X	 X	 X	 1	

	
Since	X’s	can	be	either	0	or	1,	to	maximize	the	size	of	our	groupings	and	minimize	the	
number	of	our	groupings,	we	can	transform	the	above	to	the	following	with	2	major	
groupings:	

CD	\	AB	 00	 01	 11	 10	
00	 1	 1	 1	 1	
01	 	 1	 1	 	
11	 	 1	 1	 0	
10	 1	 1	 1	 1	

	
This	gives	us	the	formula:	F	=	D% 	+	B	 	 	
NOTE:	I	purposely	made	one	of	the	Xs	into	a	0,	so	that	I	could	minimize	my	groupings.	

	
	

13. 	
A	 B	 C	 Z	 Reason	
0	 0	 1	 0	 D-latch	is	enabled	(E	=	1).	D	=	0,	so	Q	=	0.	
1	 1	 0	 1	 D-latch	is	enabled	(E	=	1).	D	=	1,	so	Q	=	1.	
0	 0	 0	 1	 D-latch	is	not	enabled	(E	=	0).	So	Q	=	Qold	=	1.	
1	 0	 0	 1	 D-latch	is	not	enabled	(E	=	0).	So	Q	=	Qold	=	1.	
1	 0	 1	 0	 D-latch	is	enabled	(E	=	1).	D	=	0,	so	Q	=	0.	
	
	

A	
B	
C	

F	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	9	
	

14. State	diagram:	
a. 	

	 	 		U" .R#		 												U" .R"	
	
					 	 	 	 			U.	R"	 	 										U.R#	 	 	 R"	(always,	unless	R	=	0)	
	
	
	
						 						R	+	R.U	=	R		 	 	 	 	 	 		L	
	

b. We’d	need	2	bits	(so	2	DFFs):	B1	and	B0.	
S0	would	be	B1B0	=	00,	S2	would	be	01,	S3	would	be	10.	The	combination	of	
B1B0	=	11	is	undefined.	
	
B1	 B0	 U	 R	 B1*	 B0*	 L	
0	 0	 0	 0	 0	 0	 0	
0	 0	 1	 0	 0	 1	 0	
0	 1	 0	 0	 0	 1	 0	
0	 1	 1	 0	 1	 0	 0	
1	 0	 X	 0	 1	 0	 1	
X	 X	 X	 1	 0	 0	 0	
	

c. K-Maps:	
For	B1*:	 	 	 	 For	B0*:	 	 	 For	L:	 	

B1B0	
UR	

00	 01	 11	 10	 	 00	 01	 11	 10	 	 00	 01	 11	 10	

00	 	 	 	 1	 	 	 1	 	 	 	 	 	 	 1	
01	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
11	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
10	 	 1	 	 1	 	 1	 	 	 	 	 	 	 	 1	

	
B1*	=	!B1.B0.U.!R	+	B1.!B0.!R	
B0*	=	!B1.B0.!U.!R	+	!B1.!B0.U.!R	
L	=	B1.!B0.!R	
	

d. Using	the	one	hot	method,	we’d	need	3	DFFs	–	one	for	every	state.	The	formulas	
for	each	state	and	the	output	would	be:		

	
S0*	=	R	+	S0.U' .R#		
S1*	=	S0.U.R#	+	S1.U" .R#	
S2*	=	S1.U.R#	+	S2.R#		
L	=	S2	

Initial	

S0	

once	

S1	

twice	

S2	

University	of	California,	Santa	Barbara	
Practice	Questions	for	CS64	(W19)	Final	Exam	 	 Dept.	of	Computer	Science	

Ver.	1	 	 	 	 	 	 	 	10	
	

15. 	
a. F0	=	!(X.Y)	XOR	Z	=	(X.Y).Z	+	!(X.Y).!Z	=	XYZ	+	!X!Z	+	!Y!Z	

	
b. 	

	

