
University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

1
© Ziad Matni, 2019

Practice Questions (and Answers) for Midterm Exam
CS 64, Fall 2019, Matni

IMPORTANT NOTE: These questions are NOT representative of EVERYTHING you need to study for
the midterm exam! You should also review your lab assignments questions and also all the examples and
demos done in class.

A. Data Representation
1. Convert the following decimal numbers into signed 8-bit binary and two-digit hexadecimal.

a. 39
b. 104
c. -59
d. -98

2. Convert the following hexadecimal numbers into decimal.

a. 0x46
b. 0x1D
c. 0x3F2

3. Convert these unsigned binary numbers into decimal.

a. 1010
b. 10101010
c. 11000001

4. Convert these signed binary numbers into decimal.

a. 1010
b. 00110100
c. 11000001

5. In 5 bits, what is the most negative value and the most positive value representable in signed

form, using two's complement? Express your answers in both binary and decimal.

6. Same question as #5, but representable in unsigned form?

7. Suppose you are given the following 4-bit binary number, shown in two's complement: 1001
You're not told whether or not the number is signed or unsigned. Is this information important in
knowing what the value of the number is, in decimal? That is, do you need to know if it's signed
or unsigned to say what the decimal value is? Why or why not?

University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

2
© Ziad Matni, 2019

B. Binary Arithmetic
8. Perform the following two's complement addition, noting whether or not the carry bit (C) and/or

the overflow bit (V) get set: 01111111 + 11111111

9. Perform the following two's complement addition, noting whether or not the carry bit (C) and/or
the overflow bit (V) get set: 00100101 + 10110111

10. Perform the following two's complement addition, noting whether or not the carry bit (C) and/or
the overflow bit (V) get set: 11100101 + 10000000

C. Bitwise Operations
11. Given the hexadecimals X and Y in each of the following below, find:

X && Y, X | | Y, and X ^ Y. Give your answers in hexadecimal.
a. X = 0x2D, Y = 0xFE
b. X = 0x67, Y = 0x67
c. X = 0x4A, Y = 0x91

12. Consider the following C code, which is intended to extract 7 bits from bits position 7 thru 13 of

the given input i, leaving the bits in their original position:

int unsignedBits7through13(int i) {

 return __________;

}

Fill in the blank with a single bitwise expression which will make the code do what it is intended
to do.

13. Consider the following C code, which is intended to extract the next 7 bits of the given input i,
treating the result as a signed value, putting the bits in the rightmost position:

int signedBits7through13(int i) {

 // Some lines of code here

 return u;

}

Fill in the empty part with valid C/C++ code (can be multiple lines) which will make the code do
what it is intended to do.

University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

3
© Ziad Matni, 2019

D. Assembly
14. Why isn't li an actual MIPS instruction?

15. Translate the following pseudo-C code into MIPS assembly. Where <<read integer from the

user>> is used, you should use special functionality provided by SPIM to read in an integer from
the console. Where <<print integer s1>> is used, you should use special functionality provided by
SPIM to print the integer stored in s1 to the console. The variables used below should be placed
in the register with the same name. For example, variable s0 should be placed in register $s0. If
you need additional registers than what the code below uses, use registers $t0 - $t9. You do not
need to exit the program properly.

int s0 = <<read integer from the user>>;
int s1 = 2;
if (s0 < 7) {
 s1 = 3;
} else {
 s1 = s0 + s0;
}
<<print integer s1>>

16. Write an entire assembly program that takes an integer from standard input (i.e. the user) and
checks to see if it is a 0, or 1, or 2 (assume the user behaves and only enters one of these 3
numbers and you do not have to check if they do otherwise). The program then prints to the
standard output the text “zero”, or “one”, or “two”, as the appropriate case may be. This has to be
followed by a newline character. Bonus points if you can do this using only 2 branch statements.

17. What is the machine code (in hexadecimal) for these instructions?
a. add $a0, $s3, $a1
b. andi $t2, $t2, 119

18. Given the C++ function described below:

int thatone(int num1, int num2) {
 ans = 4*num1 + 2*num2;

return (ans);
}

a. Which registers would you use for num1, num2, and ans, assuming MIPS Calling
Convention rules?

b. What assembly instruction would you have at the end of the function?
c. What assembly instruction would you have in the code where the function is called?

University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

4
© Ziad Matni, 2019

19. Consider the C/C++ code below:
int sum(int n) {
 if (n == 0) return 0;
 else return (n + sum(n - 1));
}

a. Knowing that you have to follow the MIPS Calling Convention, which variables should be
preserved either directly (via the stack) or indirectly (in an S-register) in order to maintain the
intended program behavior?

b. Implement the previously shown C/C++ code using MIPS assembly, taking care to preserve
the values you identified previously. Ignore the .data part and just focus on the .text part of
the program. Assume, for this implementation, you have to call the function from your main
program like this: cout << sum(4)

ANSWERS:

A. Data Representation
1.

a. 00100111, 0x27
b. 01101000, 0x68
c. 11000101, 0xC5
d. 10011110, 0x9E

2.
a. 70
b. 29
c. 1010

3.
a. 10
b. 170
c. 193.

4.
a. -6
b. 52
c. -63

5. Most negative: 10000, -16. Most positive: 01111, 15.

6. You cannot represent negative numbers with unsigned binaries. Most positive: 11111, 31.

7. We know it's signed because it's in two's complement. If we hadn't been told it was two's

complement, then because of the left-most bit being a 1, we would be unable to determine the
value of the number unless more information was given. This is because the left-most bit would
make it a negative number if the number was signed, and a different positive number if the
number was unsigned.

University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

5
© Ziad Matni, 2019

B. Binary Arithmetic
8. 01111111

+11111111

 01111110
The carry bit gets set (i.e. C = 1, V = 0)

9. 00100101
+10110111

 11011100
Neither gets set (i.e. C = 0, V = 0)

10. 11100101
+10000000

 01100101
Both get set (i.e. C = 1, V = 1)

C. Bitwise Operations
11.

a. 0x2C, 0xFF, 0xD3
b. 0x67, 0x67, 0x00
c. 0x00, 0xDB, 0xDB

12. (i & 0x00003F80)

13. int signedBits7through13(int i) {

 int u = (i & 0x00003F80) >> 7;
 if (u & 0x00000040) {
 u |= 0xFFFFFF80;
 }
 return u;
}

D. Assembly
14. All MIPS instructions are exactly 32 bits large. li can be used to load a 32 bit constant into a

register. Therein lies a problem: the constant's entire value couldn't possibly be held in a single
instruction, because there aren't enough bits (in addition to the 32 bits of the constant, there would
need to be other bits to encode what the instruction is, which requires in total more than 32 bits).
It is for this reason that li is a psuedoinstruction which can be automatically translated to multiple
instructions, whenever we need to specify a constant using the full 32 bits.

University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

6
© Ziad Matni, 2019

15.
main:

 # read in the integer from the user, and initialize s1
 li $v0, 5
 syscall
 move $s0, $v0
 li $s1, 2

 # check if $s0 < 7
 li $t0, 7
 slt $t1, $s0, $t0

 # jump to the else branch if this isn't true
 beq $t1, $zero, else_branch

 # fall through to the true branch
 li $s1, 3
 j print

else_branch:
 add $s1, $s0, $s0
 # fall through to the print

print:
 li $v0, 1
 move $a0, $s1
 syscall

16.
.data
zero: .asciiz "zero\n"
one: .asciiz "one\n"
two: .asciiz "two\n"

.text
main:
 # Get user standard input
 li $v0, 5
 syscall
 move $s0, $v0

 li $t0, 0
 li $t1, 1
 li $t2, 2

 # Assume that input is 0
 # Check to see if input is 1 or 2 and branch accordingly
 beq $s0, $t1, print1
 beq $s0, $t2, print2

University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

7
© Ziad Matni, 2019

 # Print "zero"
 li $v0, 4
 la $a0, zero
 syscall
 j end

print1: # Print "one"
 li $v0, 4
 la $a0, one
 syscall
 j end

print2: # Print "two"
 li $v0, 4
 la $a0, two
 syscall

end:
 li $v0, 10
 syscall

17.
a. 0x02652020
b. 0x314A0077

18.

a. $a0 for num1, $a1 for num2, $v0 for ans
b. jr $ra
c. jal thatone

University of California, Santa Barbara
Practice Questions for CS64 (F19) Midterm Dept. of Computer Science

8
© Ziad Matni, 2019

19.
a. $a0 for n, $v0 for the returned value (n + sum(n – 1))
b.

.text
sum:
 addiu $sp, $sp, -8 # PUSH
 sw $ra, 4($sp)
 sw $s0, 0($sp)

 beq $a0, $zero, return # is size !=0?

 move $s0, $a0 # preserve a0 (variable n)
 add $v0, $v0, $s0 # add n to $v0

 addi $a0, $a0, -1 # n is now: n - 1

 jal sum # recursive call

return:
 lw $ra, 4($sp) # POP
 lw $s0, 0($sp)
 addiu $sp, $sp, 8
 jr $ra

main:
 li $v0, 0 # Initialize sum ($v0)

li $a0, 4 # n = 4
 jal sum # Call sum(4); expect $v0 to be 10

 move $a0, $v0
 li $v0, 1
 syscall

 li $v0, 10
 syscall

	Practice Questions (and Answers) for Midterm Exam
	CS 64, Fall 2019, Matni

