Practice Questions (and Answers) for Final Exam

CS 64, Fall 2019, Matni
IMPORTANT NOTE: These questions are NOT representative of EVERYTHING you need to study for the midterm exam! You should also review your lab assignments questions and also all the examples and demos done in class.

1. Binary-to-decimal/hexadecimal conversion
a. Convert 1001001011000011 to 4-digit hexadecimal
b. Convert the signed binary value 10011111 to decimal
2. Add the $\mathbf{2}$ following 8-bit numbers: $\mathbf{0 1 1 0 0 0 1 0}$ and $\mathbf{0 0 1 1 0 1 0 0}$ and indicate the status of the carry and overflow bits at the end of the addition. Interpret your findings.
3. Translate this MIPS assembly code into C/C++ code.
```
.data
talk: .asciiz "blabla"
cs: .word 3
.text
main:
    li $t0, 5
    la $t1, cs
    lw $t2, 0($t1)
    blt $t0, $t2, gothere
    li $v0, 4
    la $a0, talk
    syscall
    j end
gothere:
    li $v0, 4
    la $a0, talk
    syscall
    syscall
end:
    li $v0, 10
    syscall
```

4. Write the following MIPS instructions in machine-language hexadecimals (show all work): addiu \$t0, \$s0, 17 and sub \$v0, \$s4, \$t5
5. Given a MIPS machine language instruction of 0×02088024, and being told that it is an R-type, what is the assembly instruction?
6. What will the final value in register $\$ s 0$ in this code be?
li \$s0, 20
sll \$s0, \$s0, 2
add \$s0, \$s0, \$s0
sra \$s0, \$s0, 4
7. Consider the $\mathrm{C} / \mathrm{C}++$ code below:
```
// arr is a globally accessible array of ints
// s0 already holds a value of type unsigned int
unsigned int s1 = arr[s0];
unsigned int s2 = arr[s0 - 1];
unsigned int s3 = arr[s0 + 1];
```

Using no more than six instructions, implement the above code snippet in MIPS. You don't have to follow the MIPS Calling Convention.
8. Consider the C/C++ code below.

```
int sum( int arr[], int size )
{
    if ( size == 0 )
        return 0;
    else
        return sum( arr, size - 1 ) + arr[size - 1];
}
```

a. Knowing that you have to follow the MIPS Calling Convention, which variables should be preserved either directly (via the stack) or indirectly (in an S-register) in order to maintain the intended program behavior?
b. Implement the previously shown C/C++ code using MIPS assembly, taking care to preserve the values you identified previously. Ignore the .data part and just focus on the .text part of the program.
9. Show how a NOR function can be used as an AND function.
10. Simplify this expression using Boolean algebra: $\mathbf{F}=\mathbf{N O T}((\mathbf{A}$ NOR B) $\cdot(\mathbf{C}+\mathbf{A} . \mathbf{B})$) and draw the resulting circuit.
11. Consider the following truth table, which includes don't cares:

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{R}
0	0	0	0	1
0	0	0	1	0
0	0	1	0	X
0	0	1	1	0
0	1	0	0	X
0	1	0	1	1
0	1	1	0	X
0	1	1	1	X
1	0	0	0	X
1	0	0	1	0
1	0	1	0	1
1	0	1	1	X
1	1	0	0	1
1	1	0	1	X
1	1	1	0	X
1	1	1	1	X

Simplify the output function \mathbf{R} using a Karnaugh Map, and show the resulting sum-ofproducts representation. Show the map, along with the boxes you chose. For full credit, both the number of ORs (+) and the sizes of the products must be minimal.
12. Consider this circuit:

What does the output \mathbf{Z} do with the following values of A, B, and C (suppose that these values happen in sequence: that is one after the other as shown in the table). Also explain why:

A	B	C	Z	Reason
0	0	1		
1	1	0		
0	0	0		
1	0	0		
1	0	1		

13. Consider a device that consists of three buttons labeled "UP" and "RESET", along with a light. The device internally counts the number of times "UP" is pressed, and when it is pressed two times, the device causes the light to illuminate. Additional presses of "UP" do nothing. Pressing "RESET" at any point will reset the internal counter back to zero, and will cause the light to go out. (Note that the light may have already been off, as when the user presses "UP" once followed by "RESET".)

For this question, you will implement this device as a finite state machine. The machine has the following two external inputs:
R : set to 1 whenever "RESET" is pressed
U : set to 1 whenever "UP" is pressed
The machine also has one external output:
L: set to 1 whenever the light should be illuminated If both "RESET" and "UP" are pressed at the same time, then the behavior should be as if only "RESET" was pressed. Basically, if R is set, no matter what state you are in, you go back to the initial state.
a) Draw the finite state machine diagram corresponding to this task. All transitions should be drawn as products of R and U. For example, if a particular transition should be taken only if $R=1$ and $U=0$, then this should be drawn as R. \bar{U} or R.!U.
b) How many D-FFs are necessary to implement this state machine?
c) Draw the truth table for all the states, showing current state bits, input bits R and U , next state bits, and output bit L. If there are "non-applicable" states, you should show them in this truth table.
d) Using K-Maps, write the optimal functions for the next state bits and the output.
14. Consider the following digital circuit:

a) Write the expression for the next-state bit F_{0} as a sum-of-product.
b) Assuming that F_{0} is initially 0 , complete the timing diagram for F_{0} based on your answer above. Make your drawing as accurate as you can. You can show intermediate variable values if you want as well.

Z

F_{0}

ANSWERS TO THE REVIEW QUESTIONS FOR FINAL EXAM

1.

a. $1001001011000011 / \mathrm{bin}=0 \times 92 \mathrm{C} 3$
b. $10011111 / \mathrm{bin} \rightarrow 01100000+1=01100001=-\left(2^{6}+2^{5}+1\right)=-97$
2. 01100010
$+\underline{00110100}$
10010110
The carry out bit $=0$, the overflow bit is 1 .
So, if these were 2 unsigned numbers, there would be no carry out, but if these were 2 signed numbers, then we'd have overflow.
3. In C/C++:
char talk[] = "blabla";
int cs = 3;
int t0 = 5;
if (t0 >= cs) \{ printf(talk); \}
else \{ printf(talk); printf(talk); \}
4. addiu $\$$ t0, $\$ \mathbf{s} 0,17=0 \times 26080011$
sub \$v0, \$s4, \$t5 = 0x028D1022
5. $0 \times 02088024=$ and $\$ \mathrm{~s} 0, \$ \mathrm{~s} 0, \$ \mathrm{tO}$
6. $\$ s 0=20 \rightarrow$ This is in decimal. So it's $0000 \ldots 00010100$ (in 32-bit binary)
sll \$s0, \$s0, $2 \rightarrow$ \$s0 becomes 0000 ... 01010000
add \$s0, \$s0, \$s0 $\quad \rightarrow$ \$s0 becomes 0000 ... 10100000
sra $\$ \mathrm{~s} 0, \$ \mathrm{~s} 0,4 \quad \rightarrow \$ \mathrm{l} 0$ becomes $0000 \ldots 00001010=\underline{10 / \mathrm{dec}}$
7. In 6 or fewer instructions:

```
la $t0, arr
sll $s0, $s0, 2
addu $t0, $t0, $s0
lw $s1, 0($t0)
lw $s2, -4($t0)
lw $s3, 4($t0)
```

8. We assume arr is in $\$ \mathbf{a 0}$ and size is in $\$ \mathbf{a 1}$.
```
.text
sum:
    addiu $sp, $sp, -12 # PUSH
    sw $ra, 8($sp)
    sw $s1, 4($sp)
    sw $s0, 0($sp)
    li $v0, 0
    beq $a1, $zero, return # is size !=0?
    addi $a1, $a1, -1 # size is now: size - 1
    move $s0, $a0 # preserve &a0
    move $s1, $a1 # preserve a1 (size)
    jal sum # recursive call
    sll $s1, $s1, 2 # multiply size by 4
    add $s0, $s0, $s1 # s0 is now the address of a[size-1]
    lw $t0, 0($s0) # Get that array element
    add $v0, $v0, $t0 # add it to $v0
return:
    lw $ra, 8($sp) # POP
    lw $s1, 4($sp)
    lw $s0, 0($sp)
    addiu $sp, $sp, 12
    jr $ra
main:
    la $a0, arr # a0 = &a[]
    li $a1, 4 # a1 = size
    jal sum
exit:
    li $v0, 10
    syscall
```

9. Taking advantage of DeMorgan's theorm, you will not that if the inputs to the NOR are inverted, you get: $\mathrm{F}=\mathrm{NOT}(\overline{\mathrm{A}}+\overline{\mathrm{B}})=\mathrm{A} . \mathrm{B}$
10. $F=\operatorname{NOT}((A$ NOR $B) \cdot(C+A \cdot B))$

$$
\begin{aligned}
& =\operatorname{NOT}((\bar{A} \cdot \bar{B}) \cdot(C+A \cdot B)) \\
& =\operatorname{NOT}(\bar{A} \cdot \bar{B} \cdot C+\bar{A} \cdot \bar{B} \cdot A \cdot B) \\
& =\operatorname{NOT}(\bar{A} \cdot \bar{B} \cdot C) \\
& =A+B+\bar{C}
\end{aligned}
$$

11. K-Map:

$\mathbf{C D} \backslash$ $\mathbf{A B}$	$\mathbf{0 0}$	$\mathbf{0 1}$	$\mathbf{1 1}$	$\mathbf{1 0}$
$\mathbf{0 0}$	1	X	1	X
$\mathbf{0 1}$		1	X	
$\mathbf{1 1}$		X	X	X
$\mathbf{1 0}$	X	X	X	1

Since X 's can be either 0 or 1 , to maximize the size of our groupings and minimize the number of our groupings, we can transform the above to the following with 2 major

$C D \backslash A B$	00	01	11	10
00	1	-1	1	1
01		1	1	
11		1	1	0
10	1	1	1	1

This gives us the formula: $\mathbf{F}=\overline{\mathbf{D}}+\mathbf{B}$
NOTE: I purposely made one of the X s into a 0 , so that I could minimize my groupings.
12.

A	B	C	\mathbf{Z}	Reason
0	0	1	0	D-latch is enabled $(E=1) . D=0$, so $Q=0$.
1	1	0	1	D-latch is enabled $(E=1) . D=1$, so $Q=1$.
0	0	0	1	D-latch is not enabled ($E=0)$. so $Q=Q_{o l d}=1$.
1	0	0	1	D-latch is not enabled $(E=0)$. So $Q=Q_{\text {old }}=1$.
1	0	1	0	D-latch is enabled $(E=1) . D=0$, so $Q=0$.

13. State diagram:
a.

b. We have 3 states, so we'd need 2 bits. Let's call them B1 and B0. This would require $2 \mathrm{D}-\mathrm{FFs}$.
c. S 0 would be $\mathrm{B} 1 \mathrm{BO}=\mathbf{0 0}, \mathrm{S} 2$ would be $\mathbf{0 1}, \mathrm{S} 3$ would be $\mathbf{1 0}$. The combination of $B 1 B 0=\mathbf{1 1}$ is undefined. The state diagram/truth table is:

inputs				outputs		
B1	B0	U	R	B1*	B0*	L
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	0	1	0
0	1	1	0	1	0	0
1	0	X	0	1	0	1
X	X	X	1	0	0	0

d. K-Maps for every output:
For B1 ${ }^{*}$:

$B 1 B 0$ $U R$	00	01	11	10
00				1
01				
11				
10		1		1

For BO*:

00	01	11	10
	1		
1			

For L:

00	01	11	10
			1
			1

$$
\begin{aligned}
& \mathrm{B}^{*}=!\mathrm{B} 1 . \mathrm{B} 0 . \mathrm{U} .!\mathrm{R}+\mathrm{B} 1 .!\mathrm{BO},!\mathrm{R} \\
& \mathrm{~B} 0^{*}=!\mathrm{B} 1 . \mathrm{BO} 0!\mathrm{U} .!\mathrm{R}+!\mathrm{B} 1 .!\mathrm{BO} 0 . \mathrm{U} .!\mathrm{R} \\
& \mathrm{~L}=\mathrm{B} 1 .!\mathrm{BO} \cdot!\mathrm{R}
\end{aligned}
$$

14.

a. $\quad F_{0}=!(X . Y) X O R Z=(X . Y) . Z+!(X . Y) .!Z=X Y Z+!X!Z+!Y!Z$

NOTE 1: Fo changes its value ONLY on the rising edge of CLK (hence the dotted lines in the diagram below - it's helpful if you show those). Remember that is because F_{0} is the result of sequential logic (it's an output of a D-FF).

NOTE 2: Since F_{0} is a combination of ! (X.Y) and Z , it's helpful (and makes easier to draw the F_{0} diagram) to show the timing diagram for !(X.Y) by itself. Remember that !(X.Y) is combinatorial logic, so it doesn't rely on CLK edges.
b.

